Florida Small Farms and Alternative Enterprises Conference

Beginning Farmer and Rancher

11:00-12:00 Building a Business and Marketing Plan
1:30-3:00 Healthy Soils Healthy Farms
4:30-5:30 Selecting Crops to Fit a Cash Flow Plan
The 2012 Educational Program Committee is pleased to share conference educational materials with you under the condition that they are used without alteration for educational and non-commercial use only. All materials are protected by copyright law. The authors kindly request their work is properly cited, including the date of publication.

For more information on Small Farms, visit our website at:
http://smallfarms.ifas.ufl.edu or contact your local County Extension Agent.

For inquiries about this topic, please contact:
Danielle Treadwell, Educational Program Chair.
Phone: (352)-273-4775
E-mail: ddtreadw@ufl.edu

Suggested Citation: Author Full Name. Title of Presentation or Handout. 2012 University of Florida-IFAS and Florida Agricultural and Mechanical University-CAFS Florida Small Farms and Alternative Enterprises Conference. July 27-29, Kissimmee, FL.
This project was supported by the Beginning Farmer and Rancher Development Program of the National Institute of Food and Agriculture, USDA
Facilitators

Rose Koenig and Juan Carlos Rodriguez
Who am I?

Rosalie L. Koenig
Lecturer
Phone: (352) 273-3422
Fax: (352) 392-1840
E-mail: rlkoenig@ufl.edu
Who is Juan Carlos?

Juan Carlos Rodriguez
Phone: (352) 273-3509
E-mail: jcro@ufl.edu
Other overexploitation (7%)

Industrialization (1%)

Cropland agriculture (28%)

Overgrazing (34%)

Deforestation (30%)
Share a Characteristic from your list
Ideal Soil

- Mineral
- Water
- Air
- Organic Matter

Air
Water
Mineral
Organic Matter
Characteristics for each property
Healthy Soil

Chemical properties:
- pH near neutral
- Optimal nutrient levels
- No harmful chemicals
- Low levels of salts

Biological properties:
- Extensive biodiversity
- Plentiful beneficial organisms
- Low pest pressure

Physical properties:
- Good tilth
- Surface structure porous and stable
- No subsoil layers restricting roots
- Good aeration, water storage, drainage

No text in the image regarding biological properties.
So What is Organic Matter? How does it work???
Functions of SOM

Biological Functions
- Provides source of energy (essential for biological processes)
- Provides reservoir of nutrients (N, P, S)
- Contributes to resilience of soil/plant system

Physical Functions
- Improves structural stability of soils at various scales
- Influences water-retention properties of soils and thus water-holding capacity
- Alters soil thermal properties

Chemical Functions
- Contributes to the cation exchange capacity
- Enhances ability of soils to buffer changes in pH
- Complexes cations (enhanced P availability), reduces concentrations of toxic cations, promotes binding of SOM to soil minerals
Components of Soil Organic Matter

- Decomposing organic matter (active fraction): 33% - 50%
- Stabilized organic matter (humus): 33% - 50%
- Fresh residue: <10%
- Living organisms: <5%
The Soil Food Web

Plants
Shoots and roots

Organic Matter
Waste, residue and metabolites from plants, animals and microbes.

Bacteria

Fungi
- Mycorrhizal fungi
- Saprophytic fungi

Nematodes
- Root-feeders
- Fungal- and bacterial-feeders

Arthropods
- Shredders
- Predators

Protozoa
- Amoebae, flagellates, and ciliates

Animals

First trophic level:
Photosynthesizers

Second trophic level:
- Decomposers
- Mutualists
- Pathogens, parasites
- Root-feeders

Third trophic level:
- Shredders
- Predators
- Grazers

Fourth trophic level:
- Higher level predators

Fifth and higher trophic levels:
- Higher level predators
Mineralization and Immobilization

Organisms consume other organisms and excrete inorganic wastes.

Organic nutrients are stored in soil organisms and organic matter.

Inorganic nutrients are usable by plants, and are mobile in soil.

Organisms take up and retain nutrients as they grow.
Read Scenarios
<table>
<thead>
<tr>
<th>Amendment</th>
<th>C:N Ratio</th>
<th>Decomposition rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grass clippings</td>
<td>9-25:1</td>
<td>Rapid decomposition (days to weeks)</td>
</tr>
<tr>
<td>Cow manure</td>
<td>10-30:1</td>
<td>Rapid decomposition (days to weeks)</td>
</tr>
<tr>
<td>Vegetable Waste</td>
<td>11-19:1</td>
<td>Rapid decomposition (days to weeks)</td>
</tr>
<tr>
<td>Composts</td>
<td>20-45:1</td>
<td>Moderate decomposition (about six months)</td>
</tr>
<tr>
<td>Oat Straw</td>
<td>50-100:1</td>
<td>Moderate decomposition (about six months)</td>
</tr>
<tr>
<td>Wood chips</td>
<td>100-1000:1</td>
<td>Slow decomposition (possibly years)</td>
</tr>
<tr>
<td>Sawdust</td>
<td>200-750:1</td>
<td>Slow decomposition (possibly years)</td>
</tr>
</tbody>
</table>
Practices that enhance soil organic matter (source NRCS)

- Diverse, high biomass crop rotations
- Cover crops, green manure crops
- Reduced tillage/no tillage
- Strip cropping, permanent beds
- Rotational or prescribed grazing (if animals are in your system)
Crop rotation

source: 2005 Pearson Education Inc., publishing as Benjamin Cummings

• Alternating the crop planted (e.g., between corn and soybeans) can restore nutrients to soil and fight pests and disease.
Conservation tillage

source: 2005 Pearson Education Inc., publishing as Benjamin Cummings

• No-till and reduced-tillage farming leaves old crop residue on the ground instead of plowing it into soil. This covers the soil, keeping it in place.
Intercropping

source: 2005 Pearson Education Inc., publishing as Benjamin Cummings

- Mixing crops such as in *strip cropping* can provide nutrients and reduce erosion.
Leucaena leucocephala (alley cropping with corn in Nigeria) Copyrighted by Dr. Erick C.M. Fernandes ©2003