Biology and Control of Floating Heart (*Nymphoides cristata*)

Leif Willey – University of Florida Center for Aquatic and Invasive Plants
Nymphoides - Dicotyledons

• About 50 species world wide
 – All aquatic, found on every continent except Antarctica
 – Common weeds in rice fields

• 5 species found in US (2 natives)
 – all 5 found in FL

• Nymphaeaid growth

• Multiple methods of vegetative spread
Nymphaeaid Growth Form

- Floating leaves
- Elongated stem
- Sediment surface
- Roots
N. cristata

Nymphoides aquatica
tubers

N. cristata

Created floating heart
Nymphoides cristata
Photo by Ann Murray
© 2001 University of Florida
N. cristata
Distribution of Exotic *Nymphoides* in the US

Jacono and Langeland
Distribution of Native Nymphoides

Nymphoides cordata

Nymphoides aquatica
Identification

- *N. peltata* (introduced)

N. Cordata (native)

N. Aquatica (native)

N. Cristata (introduced)
N. indica (introduced)

Feathery projections covering petal
N. cristata (introduced)

Erect Longitudinal Crest
N. cordata and N. aquatica (Natives)
Buying Invasives Online

• Out of state
 • http://www.pondplants.com
 • http://toptropicals.com/
 • https://www.pondmegastore.com
 • http://www.watergarden.org
 • http://www.grassrootsnursery.com/
 • http://www.lilypons.com/
 • http://www.pondplants2you.com
 • http://www.pondworld.com
 • http://www.blueridgefish.com
 • http://springdalewatergardens.com

• In state
 • http://www.floridaaquatic.com
 • http://www.aquariumplants.com
 • http://asr4ponds.com/
 • http://coolponds.com

Aquatic nursery Industry ~ $1billion
N. Cristata (crested floating heart)

Native to Asia
- First report 1996
- Few scientific studies

ID characteristics
- Flower
- Floating leaves
- Habitat

Invasiveness
- Spread
- Problems
Why Study Floating Heart?

• Continuing to Spread
 – Water gardens and site transfer
• Very limited information on *N. cristata*
• Difficult to manage
 – Low success rate with various herbicide approaches
 – no accepted standard for control
• Grass carp are not a viable option
 – Rapid spread in Lake Marion/Moultrie (Other SE Reservoirs where carp are stocked ?)
N cristata is a Category 1 Invasive species in FL(2009)

Category 1: invasive exotic that is displacing native species, changing community structures, or ecological functions. Present in natural areas
Invasive potential

N. Cristata in Lake Marion, SC
20 acres to 2000 acres in 2 yrs

- Spread
- Competitive ability
- Herbicide response
 - current techniques
Canal in SW Florida
N. Cristata Growth studies

- Soil type and soil fertility
- Light Intensity
Sediment & Fertility

• 3 soil types
 - Lake Toho (97% sand),
 - Orange Lake (77% O.M)
 - Potting soil mix

• Highly fertile sand sediment yielded greatest growth

• Non amended lake sediments = poor growth

• Growth more dependent on nutrient availability than sediment type
Light Intensity

- Daughter plants established at 5 light intensities – (1, 5, 25, 50 & 100% incident light)

- Measured parameters peaked at 25% light

- At 1% light (~20 µmoles) - daughter plants produced small viable leaves that reached the water surface
Management Research Objectives

• Determine response of *N. cristata* to herbicides
• Does method of application influence efficacy?
 – Emergent vs. submersed
• Does herbicide formulation influence efficacy?
 – Granular vs. liquid
• Determine factors that influence herbicide translocation
 – E.g. water depth, leaf surface area
Translocation ?
Herbicide Screening

• All registered aquatic herbicides evaluated
 - Comparative Trials – Focusing on short exposure times
 - Exception – ALS herbicides and Fluridone = static exposures

• Method of application
 – Emergent
 – Submersed
 * liquid vs. granular
Growth regulators

- 2,4-D and Triclopyr - dicots
- 24 and 96 hour exposures
 - Liquid and granular
- Emergent 1 to 4 qts/acre
- No reduction of biomass at 4 WAT
- Limited visual injury

[Graph showing mean dry weight at 24 hr. exposure 4WAT]
Contact Herbicides

- 24 & 96 hour exposures
- Foliar and submersed strategies tested
- Formulation had limited impact
- Greater reductions in biomass at 96 hour exposure
Contact herbicides cont.

- Diquat at 370 ppb regrew to pre treatment dry weights with 24 Hr exposure
- Hydrothol was most effective at preventing regrowth
Systemic herbicides

- Static exposures
- Foliar and submersed treatments
- Imazamox and Imazapyr applied foliar yielded fast burn down with no regrowth at 4 WAT.
- Glyphosate alone not effective
Results and Ongoing Research

• Herbicides –
 – good at removing surface leaves
 – Poor at controlling the plant

• Compare foliar and submersed strategies for the most active herbicides
 – Strategies to control daughter plants

• Competition studies with hydrilla
Hydrilla and Nymphoides –

- Growth at low light intensities
- Growth from propagules (tubers or daughter plants)

Rapid growth to water surface

Formation of large contiguous canopies

Grass Carp
- Love Hydrilla
- Hate Nymphoides
Questions?