Utility corridors are inherently diverse from a landscape ecosystem perspective, representing a diverse cross-section through the landscape and providing suitable habitat for myriad plant and animal species.

Project Background

ITC operates approximately 15,000 miles of electric transmission lines. In 2008, the US Fish and Wildlife Service worked with the agency responsible for tracking natural heritage data to create an overall database of known occurrence locations for their corridors. Coordination has involved federal and state wildlife agencies, including the USFWS, MN DNR, and Iowa, Minnesota, and Illinois Departments of Natural Resources to secure accurate occurrence data throughout ITC’s Midwest and Mid-Atlantic transmission footprints.

Based on this shared data, the natural history traits of each species and corridor characteristics of unique ecosystems, ITC developed a GIS-based mapping system to highlight locations where rare species and ecosystems are known to occur and communicate where and how vegetation management activities can be modified to minimize adverse impacts.

Common Misconceptions

There are many misconceptions about transmission corridors, especially related to competition and function. Utility corridors and other rights-of-way are often stereotyped as sterile landscapes, extending for miles and usually infested with invasive species.

In the case of overhead transmission lines, they are believed to serve a single, unidirectional purpose: to provide the safe and efficient delivery of electricity from place to place. Many believe this can only be accomplished by heavy-handed Clearing practices that remove vegetation beyond that, and low shrubs and small trees along the edges of the easement.

An ideal cross-section of a transmission corridor shows grasses growing in the wire zone, low growing herbs and herbaceous vegetation beyond that, and tall shrubs and small trees along the edges of the easement.

This is the scenario that foresters and planners aim for as they manage vegetation along ITC’s electrical super high-voltage – it speaks to the structure of the vegetation in the corridor but not necessarily species composition or function.

Changing Perspectives

Ecosystem Indivinity

Rights-of-way can be biologically and ecologically diverse. Because they span thousands of miles, utility corridors are inherently diverse from an ecosystem perspective—they cross different macro- and microclimates, soil types, vegetation, and wildlife.

Changing Perspectives

Site and Rare Species

Rights-of-way provide suitable habitat for many species, including threatened and endangered species associated with fire-adapted ecosystems, such as prairie and oak savanna, where the selective burning of invasive species is incompatible with restoring and maintaining wildlife habitat for rare species.

In the case of overhead transmission lines, they are believed to serve a single, unidirectional purpose: to provide the safe and efficient delivery of electricity from place to place. Many believe this can only be accomplished by heavy-handed Clearing practices that remove vegetation beyond that, and low shrubs and small trees along the edges of the easement.

An ideal cross-section of a transmission corridor shows grasses growing in the wire zone, low growing herbs and herbaceous vegetation beyond that, and tall shrubs and small trees along the edges of the easement.

This is the scenario that foresters and planners aim for as they manage vegetation along ITC’s electrical super high-voltage – it speaks to the structure of the vegetation in the corridor but not necessarily species composition or function.

Changing Perspectives

Site and Rare Species

Rights-of-way provide suitable habitat for many species, including threatened and endangered species associated with fire-adapted ecosystems, such as prairie and oak savanna, where the selective burning of invasive species is incompatible with restoring and maintaining wildlife habitat for rare species.

In the case of overhead transmission lines, they are believed to serve a single, unidirectional purpose: to provide the safe and efficient delivery of electricity from place to place. Many believe this can only be accomplished by heavy-handed Clearing practices that remove vegetation beyond that, and low shrubs and small trees along the edges of the easement.

An ideal cross-section of a transmission corridor shows grasses growing in the wire zone, low growing herbs and herbaceous vegetation beyond that, and tall shrubs and small trees along the edges of the easement.

This is the scenario that foresters and planners aim for as they manage vegetation along ITC’s electrical super high-voltage – it speaks to the structure of the vegetation in the corridor but not necessarily species composition or function.

Changing Perspectives

Site and Rare Species

Rights-of-way provide suitable habitat for many species, including threatened and endangered species associated with fire-adapted ecosystems, such as prairie and oak savanna, where the selective burning of invasive species is incompatible with restoring and maintaining wildlife habitat for rare species.

In the case of overhead transmission lines, they are believed to serve a single, unidirectional purpose: to provide the safe and efficient delivery of electricity from place to place. Many believe this can only be accomplished by heavy-handed Clearing practices that remove vegetation beyond that, and low shrubs and small trees along the edges of the easement.

An ideal cross-section of a transmission corridor shows grasses growing in the wire zone, low growing herbs and herbaceous vegetation beyond that, and tall shrubs and small trees along the edges of the easement.

This is the scenario that foresters and planners aim for as they manage vegetation along ITC’s electrical super high-voltage – it speaks to the structure of the vegetation in the corridor but not necessarily species composition or function.

Changing Perspectives

Site and Rare Species

Rights-of-way provide suitable habitat for many species, including threatened and endangered species associated with fire-adapted ecosystems, such as prairie and oak savanna, where the selective burning of invasive species is incompatible with restoring and maintaining wildlife habitat for rare species.

In the case of overhead transmission lines, they are believed to serve a single, unidirectional purpose: to provide the safe and efficient delivery of electricity from place to place. Many believe this can only be accomplished by heavy-handed Clearing practices that remove vegetation beyond that, and low shrubs and small trees along the edges of the easement.

An ideal cross-section of a transmission corridor shows grasses growing in the wire zone, low growing herbs and herbaceous vegetation beyond that, and tall shrubs and small trees along the edges of the easement.

This is the scenario that foresters and planners aim for as they manage vegetation along ITC’s electrical super high-voltage – it speaks to the structure of the vegetation in the corridor but not necessarily species composition or function.

Changing Perspectives

Site and Rare Species

Rights-of-way provide suitable habitat for many species, including threatened and endangered species associated with fire-adapted ecosystems, such as prairie and oak savanna, where the selective burning of invasive species is incompatible with restoring and maintaining wildlife habitat for rare species.

In the case of overhead transmission lines, they are believed to serve a single, unidirectional purpose: to provide the safe and efficient delivery of electricity from place to place. Many believe this can only be accomplished by heavy-handed Clearing practices that remove vegetation beyond that, and low shrubs and small trees along the edges of the easement.

An ideal cross-section of a transmission corridor shows grasses growing in the wire zone, low growing herbs and herbaceous vegetation beyond that, and tall shrubs and small trees along the edges of the easement.

This is the scenario that foresters and planners aim for as they manage vegetation along ITC’s electrical super high-voltage – it speaks to the structure of the vegetation in the corridor but not necessarily species composition or function.

Changing Perspectives

Site and Rare Species

Rights-of-way provide suitable habitat for many species, including threatened and endangered species associated with fire-adapted ecosystems, such as prairie and oak savanna, where the selective burning of invasive species is incompatible with restoring and maintaining wildlife habitat for rare species.

In the case of overhead transmission lines, they are believed to serve a single, unidirectional purpose: to provide the safe and efficient delivery of electricity from place to place. Many believe this can only be accomplished by heavy-handed Clearing practices that remove vegetation beyond that, and low shrubs and small trees along the edges of the easement.

An ideal cross-section of a transmission corridor shows grasses growing in the wire zone, low growing herbs and herbaceous vegetation beyond that, and tall shrubs and small trees along the edges of the easement.

This is the scenario that foresters and planners aim for as they manage vegetation along ITC’s electrical super high-voltage – it speaks to the structure of the vegetation in the corridor but not necessarily species composition or function.

Changing Perspectives

Site and Rare Species

Rights-of-way provide suitable habitat for many species, including threatened and endangered species associated with fire-adapted ecosystems, such as prairie and oak savanna, where the selective burning of invasive species is incompatible with restoring and maintaining wildlife habitat for rare species.

In the case of overhead transmission lines, they are believed to serve a single, unidirectional purpose: to provide the safe and efficient delivery of electricity from place to place. Many believe this can only be accomplished by heavy-handed Clearing practices that remove vegetation beyond that, and low shrubs and small trees along the edges of the easement.

An ideal cross-section of a transmission corridor shows grasses growing in the wire zone, low growing herbs and herbaceous vegetation beyond that, and tall shrubs and small trees along the edges of the easement.

This is the scenario that foresters and planners aim for as they manage vegetation along ITC’s electrical super high-voltage – it speaks to the structure of the vegetation in the corridor but not necessarily species composition or function.