Application of an Enhanced, Fine-Scale SWAT Model to Target Land Management Practices for Maximizing Pollutant Reduction and Conservation Benefits

Amanda Flynn, Todd Redder, Joe DePinto, Derek Schlea Brian Lord, Laura Weintraub

5th National Conference on Ecosystem Restoration
July 30, 2013
Presentation Outline

• Project Background and Role in GLWESS
• Tiffin Watershed
• Enhanced, Fine-Scale SWAT Model (TRSWAT)
• Targeted Land Management Practices
Project Background
Great Lakes Tributary Modeling Program

• Objective: “develop a tool for watershed planning that is usable and will be used by stakeholders who make decisions about soil conservation and NPS pollution prevention measures...” (http://glc.org/tributary/)

• Funded by the USACE-Buffalo District under 516(e)

• TRSWAT used to determine sediment and nutrient:
 – Critical source areas
 – Key transport pathways
 – Effect of management practices on rates of delivery (i.e., load reduction) to watershed outlet
Overview of Ecological Concerns

• Impact of degraded stream habitat & water quality on fish/macroinvertebrate indicators

• Watershed export of sediment and nutrients:
 – Suspended solids
 – Phosphorus (P), especially soluble reactive P
 – Nitrogen (N)

• Eutrophication & sedimentation impacts in WLEB:
 – High sedimentation rates in Federal navigation channel
 – Harmful algal blooms (HABs)
 – Nuisance benthic algae
Great Lakes Watershed Ecological Sustainability Strategy (GLWESS)

- Link ecosystem improvement outcomes to type, placement and amount of BMPs applied in watershed
- Test transaction framework that will pay for water stewardship practices based on how well they reduce the release of sediment and nutrients from farmlands
- Models used to support transactions
 - SWAT watershed models
 - Western Lake Erie Ecosystem Model (WLEEM)
- Agricultural community will be ultimate end user
Tiffin River Watershed
Tiffin River Watershed

Maumee River Basin
(6,300 mi²)

http://en.wikipedia.org/wiki/Maumee_River
General Watershed Characteristics

- Topography of the watershed is flat to rolling:
 - 0-6% slope = 95% of drainage area
 - Max percent slope ~23%
- Annual average precipitation ranges from 34 –37 inches
- 90% of the soils are moderately poor to very poorly drained (HSG C/D)
- Land use is predominantly agriculture; extensively tile drained

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Percent of Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cropland</td>
<td>51.7%</td>
</tr>
<tr>
<td>Forest</td>
<td>19.1%</td>
</tr>
<tr>
<td>Pasture</td>
<td>10.3%</td>
</tr>
<tr>
<td>Urban</td>
<td>16.7%</td>
</tr>
<tr>
<td>Wetland</td>
<td>2.1%</td>
</tr>
</tbody>
</table>
Enhanced, Fine-Scale SWAT Model (TRSWAT)
SWAT Background

• Developed by USDA-ARS
• Models daily flow, TSS, and nutrients
• Accounts for land management practices

• Limitations
 – HRUs not spatially explicit within subbasin
 – No simulation of ephemeral gullies
HRUs represent multiple (non-contiguous) areas within subbasin with common characteristics:

1) Land use/cover
2) Soil drainage conditions
3) Land slope
Watershed & Subbasin Delineation

- Fine-scale SWAT model:
 - 907 subbasins
 - Average area of ~540 acres
 - >15,000 HRU’s (LU/LC, soils, slope, and management)

- Based on NHDPlus DEM, stream network
Ephemeral Gully (EG) Erosion

- Incorporate TI-EGEM algorithms into SWAT code
- Confirmation, testing, and diagnostics
- Identify PEG’s based on high-resolution DEM, satellite imagery, CTI
- Implementation in TRSWAT

Ephemeral gully in Upper Auglaize watershed (Bingner et al. 2005)
Tiffin satellite imagery of EG’s
Potential Ephemeral Gully Locations (Ohio portion only)
Crop and Tillage Rotations

- Develop a 4-year crop rotation/tillage operation sequence for each cropland HRU
- Crop data from USDA NASS cropland data layer
- Tillage data from NRCS transects, remote sensing
Targeted Land Management Practices
TRSWAT Model Application Approach

• **Goal:** Evaluate the impact of land “random” versus “targeted” management alternatives on sediment/nutrient export from the Tiffin River watershed

• **Approach:**
 – Evaluate appropriate BMP/land management alternatives for ephemeral gully erosion and nutrient export
 – Translate BMPs into modified SWAT inputs
 – Run the suite of BMP scenarios
 – Interpret results & report findings
Ephemeral Gully Contributions

- Relative proportions of erosion sources “watershed wide”

<table>
<thead>
<tr>
<th>Sediment Source</th>
<th>% Source Contribution to Total Sediment Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sheet and Rill</td>
<td>71%</td>
</tr>
<tr>
<td>Ephemeral Gully</td>
<td>29%</td>
</tr>
</tbody>
</table>

- Ephemeral gully erosion contribution varies significantly by HRU, contributing ~0 to 90% of the total sediment load
SWAT BMP Representation to Address Ephemeral Gully Erosion:

• **Grassed Waterways:**
 - **Conceptual:** reduce sediment/nutrient erosion from ephemeral gullies, first-order channels and ditches.
 - **SWAT Representation:** remove ephemeral gully locations from HRUs, incorporate grassed waterway (assumed 5 meter (~16 ft) width)
TRSWAT Scenarios:

- **Baseline** = Historical conditions
- **Random** = EG removal/ grassed waterways implemented on 20% of the watershed area by random selection of subbasins
- **Targeted** = EG removal/ grassed waterways implemented on 20% of the watershed area based on highest sediment yield/most erodible subbasins
TRSWAT results indicate a +11\% reduction in sediment subbasin yield for targeted grassed waterway implementation compared to random implementation.
Preliminary Results – TP is not yet fully calibrated in TRSWAT.

Greatest load reduction resulted from targeted grassed waterway implementation.
TRSWAT results indicate a **+5% reduction** in TSS load and **+14% reduction** in TP load at the watershed outlet for **targeted** grassed waterway implementation compared to random implementation.
Transactions \rightarrow Ecological Endpoints

Transactions
- Reverse auction
- Certification

Improved Management Practices
- Type of practice(s)
- Affected land area

Watershed Models (SWAT)

Western Lake Erie Ecosystem Model (WLEEM)

Ecological Endpoints

Improved “Indices of Biological Integrity” (IBIs)
(various locations in stream network)

Reduced Nutrient & Sediment Delivery (@ tributary mouths)

Reduced Algal Growth in Western Lake Erie Basin
- *Microsystis* blooms
- *Lyngbya* blooms

TRSWAT will be used to identify transactions that incentivize agriculture practices to produce desired ecosystem benefits
Questions?

Acknowledgements:

Funding: USACE, Buffalo District
Partners: Ecology & Environment, Inc.; Michigan Tech Research Institute (MTRI); Heidelberg University

Contact Information:

Amanda Flynn, Project Scientist
501 Avis Drive, Ann Arbor, MI 48108
aflynn@limno.com