Targeting and Incentivizing Environmentally Beneficial Conservation Practices in Great Lakes Agricultural Watersheds

Project: Great Lakes Watershed Ecological Sustainability Strategy

Primary Funding: Great Lakes Protection Fund
Leveraged Funding from other Projects: USACE-Buffalo District, USDA-NRCS Great Lakes CEAP program
The Problem

- Excess sediment and bioavailable phosphorus loads from agricultural nonpoint source areas
- Environmental Impacts:
 - Excess sedimentation in harbors and navigation channels
 - Detrimental impacts on fish and benthic communities in watershed stream network
 - Blooms of harmful and nuisance algae (e.g., *Microcystis, Lyngbya, Cladophora*)
 - Eutrophication symptoms such as hypoxia
- Impacts seen in Great Lakes embayments and basins – Lake Erie (Western Basin, Central Basin), Green Bay, Saginaw Bay, nearshore areas in Lake Michigan, Lake Huron, Lake Ontario

Flow-weighted SRP concentration $\approx 85 \text{ ug/L}$

September 3, 2011
The Cause-Effect Analysis

External Factors

- Land Use
- Agricultural Practices
- Meteorological Events

Nonpoint Source Solids and Nutrient Loading (SWAT)

- Fish and Benthos Impacts in Watershed Stream Network (Empirical Model)
- Eutrophication Symptoms in lake
 - HABs
 - Hypoxia
 - Sedimentation (WLEEM)
The Solution: Transactions ↔ Ecological Endpoints

Transactions
- **Candidate Transactions**
 - Reverse auction
 - Certification

 Final Evaluation of Transactions
 - Type
 - Location(s)
 - Funding

Improved Management Practices
- Type of practice(s)
- Affected land area

Watershed Models (SWAT)
- Changes to crops, tillage, drainage, etc.
 - Flow, sediment, nutrient loading

Western Lake Erie Ecosystem Model (WLEEM)
- Flow, sediment, nutrient loading
 - Model Linkage
 - @ Waterville

Ecological Endpoints
- Improved “Indices of Biological Integrity” (IBIs)
 - (various locations in stream network)
- Reduced Nutrient & Sediment Delivery
 - (@ tributary mouths)
- Reduced Algal Production and Sediment Problems in Western Lake Erie
 - *Microcystis* blooms
 - Sedimentation/turbidity

*Relative ecological benefits
*Bid ranking ($/lb algal reduction)
Session 5 Talks

1. Dennis McGrath, The Nature Conservancy. SUSTAINING AQUATIC ECOSYSTEMS IN AGRICULTURAL WATERSHEDS

2. Amanda Flynn, et. al., LimnoTech. APPLICATION OF AN ENHANCED, FINE-SCALE SWAT MODEL TO TARGET LAND MANAGEMENT PRACTICES FOR MAXIMIZING POLLUTANT REDUCTION AND CONSERVATION BENEFITS

3. Leah Harris and Scott Swinton, Michigan State University. EVALUATING INCENTIVES FOR CROP FARMERS TO PROVIDE AQUATIC ECOSYSTEM BENEFITS

Extra Slides
Trends in annual loads and flow weighted mean concentrations of dissolved reactive phosphorus in the Maumee and Sandusky rivers.
Microcystis in Lake Erie Western Basin

- The *Microcystis-Anabaena* bloom of 2009 was the largest in recent years in our sampling region.
- …until 2011
Lake Erie - One of the Most Important Lakes in the World

- Poster child for pollution problems in this country.
 - “Dead lake” image of 60s and 70s.
 - “They’ll walk on their fins and get woefully weary in search of some water that isn’t so smeary. *I hear things are just as bad in Lake Erie.*”
 - From *The Lorax*, Dr. Seuss (1971)
- Best example of ecosystem recovery in world.

- But, most heavily utilized of any of the Great Lakes.
 - Shared by 4 states and 2 countries.
 - Drinking water for 11 million people
 - Over 20 power plants
 - 300 marinas in Ohio alone
 - Walleye Capital of the World – $1.5 billion sport fishery
 - 40% of all Great Lakes charter boats
 - Ohio’s charter boat industry in largest in North America
 - The most valuable freshwater commercial fishery in the world
 - Coastal county tourism value is over $10 billion
Historical Trends: The Lake Erie Ecosystem

- 1970: Lake Erie declared “dead lake”
- 1969—Cuyahoga River burns
- Hypoxia in Central Basin
- Major blue-green algal blooms

- 1970 – 1985: Enormous binational effort to address eutrophication problem
 - Confirm excess phosphorus is cause
 - Reduce point and nonpoint source phosphorus loads to achieve IJC targets established by whole-lake models

- ~1985 – 95: Stable

- 1995 – present: Getting worse
 - Re-occurrence of Blue-green algal blooms
 - Worsening of Central Basin hypoxia

Photo: Ohio Sea Grant

June 22, 1969
Serious Nuisance and Harmful Algal Blooms

Annual Hypoxia

Surface water warmed by the sun
Cold oxygen-poor water

Thermocline

Epilimnion
Hypolimnion

Photo: Ohio Sea Grant