Mechanisms Of Biogenic Carbon Storage In Seasonal Shallow lakes From Colombian Llano And Brazilian Pantanal
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Pantanal de Mato Grosso (subregion of Pocone), Brazil
(16° 19.255'S, 56° 20.817'0 - 16° 22.834'S, 56° 19.591'0)

The two study sites are seasonally flooded savannas, north and south of the Amazonian Rain
Forest. They present two well-defined periods: wet and dry seasons (hydrologic variation

due to the annual flood pulse (Junk 1989, Junk & Wantzen 2004)). The studied SSLs are locally
known as esteros and brejos in the Llano and Pantanal, respectively.

Experimental design and sampling

To assess the effect of seasonality on soil carbon storage, we sampled mostly at the end of
the seasons (wet season sampling: Pantanal, 21.04.2010 - 5.05.2010; Llano, 4.11.2010 - 4.12.2010.

Dry season sampling: Pantanal, 10.12.2010 - 24.12.2010; Llano, 24.02.2011- 14.03.201). The
sampling points were the same along the two seasons.
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The studied SSLs in the Llano are larger than in Pantanal, they are characterized to be
deeper and with more defined contour. In contrast, in Pantanal SSLs are shallower and
opener wetlands, more connected with other water bodies during wet season.

Conclusions
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Further information for very interested people

* The SSLs present an annual predictable flood pulse caused primarily by rain and runoff
water. The divergence between floodpulse patterns among the Llanos and Pantanal is mainly
due to differencesin the SSL geomorphology (bathymetry).

* The length variation of dry season between the Llano and Pantanal is in big part responsible
for the SSL capacity to store carbon. Dry season leads to aeration and decomposition of
organic matter (OM), resulting in carbon stock losses (Mitra et al. 2005).

* In the Llano, wet season is longer and deeper than in SSLs from Pantanal, in the same way
stored carbonis also significantly higher.

* In SSLs distinctive carbon pulses can be shaped, according with the nature of their flood
pulse. The carbon sink or source function is a stage of carbon pulse rather than a static

condition.

*

decomposition.

* SSLs from Pantanal store carbon during wet season. However, as a consequence of long dry
season, accumulated OMis decomposed and carbon content comes near to zero.
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In the Llano, water level reduction during early dry season causes a bigger OM
accumulation, increasing soil carbon contents when biomass decay and before its

Lla Dry 0.000 0.034 0.001 0.011
Pan Wet 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Pan Dry 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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* From soil carbon dynamic in the Llano, we infer that SSLs from Pantanal have as well a peak
of carboninput atearly dry season.

* At the beginning of wet season, a peak of carbon input is expected, when terrestrial plants
growing into SSL basins are drowned and incorporated to the aquatic system. Additionally,
allochthonous OM accumulatedin dry seasonis transported to SSLs by runoff water.

* SSL geomorphology is also related to particles transport and retention. The more concave
shape of SSLs from the Llano facilitates fine particles (as clay) and carbon retention. In
contrast, carbon and clay presumably are not long retained in SSLs from Pantanal, due to
their shallower morphology. Soil carbon content has been associated with the presence of
clay (Woomeretal.1994).

* There is cyclical connection between carbon in soil, nutrient retention (nitrogen) and
orimary productivity (biomass), which again determine organic carbonsources.

* Flood pulse, basin morphology, primary productivity and physical soil constitution are
interacting factors determining carbon storage in neotropical SSLs.

* Long term monitoring of SSLs will improve the understanding of their carbon storage
dynamics. We conclude that SSLs from Pantanal have a carbon pulse sequestration that
restarts again every year in wet season. In SSLs from the Llano, some carbon is kept at the
end of dry season, resulting in an annual net carbon sequestration.
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