

Introduction

Ecological performance standards for forested wetland compensatory mitigation sites in Virginia include: >990 woody stems/ha (>400 stems/acre)¹

The woody stem density standard can be accomplished through: Natural tree colonization from surrounding forests²

Wetland compensation sites are not meeting ecological performance standards³⁻⁷ mainly as a result of: Poor survival of planted woody vegetation⁸⁻¹⁵ Improper species selection Improper stocktype selection

Previous studies suggest that species and stocktype should be matched to hydrologic conditions¹⁷

The purpose of this study in part, is to determine the appropriate species and stocktype combinations for use in wetland compensation sites and other afforestation or reforestation projects

Hypotheses

Within each cell, gallon stocktypes and primary successional species will have greater probabilities of survival and height growth rates when compared to other stocktypes and secondary successional species.¹⁸ Bare root stocktypes will be the least expensive stocktype to ensure meeting the required stem density.¹⁹

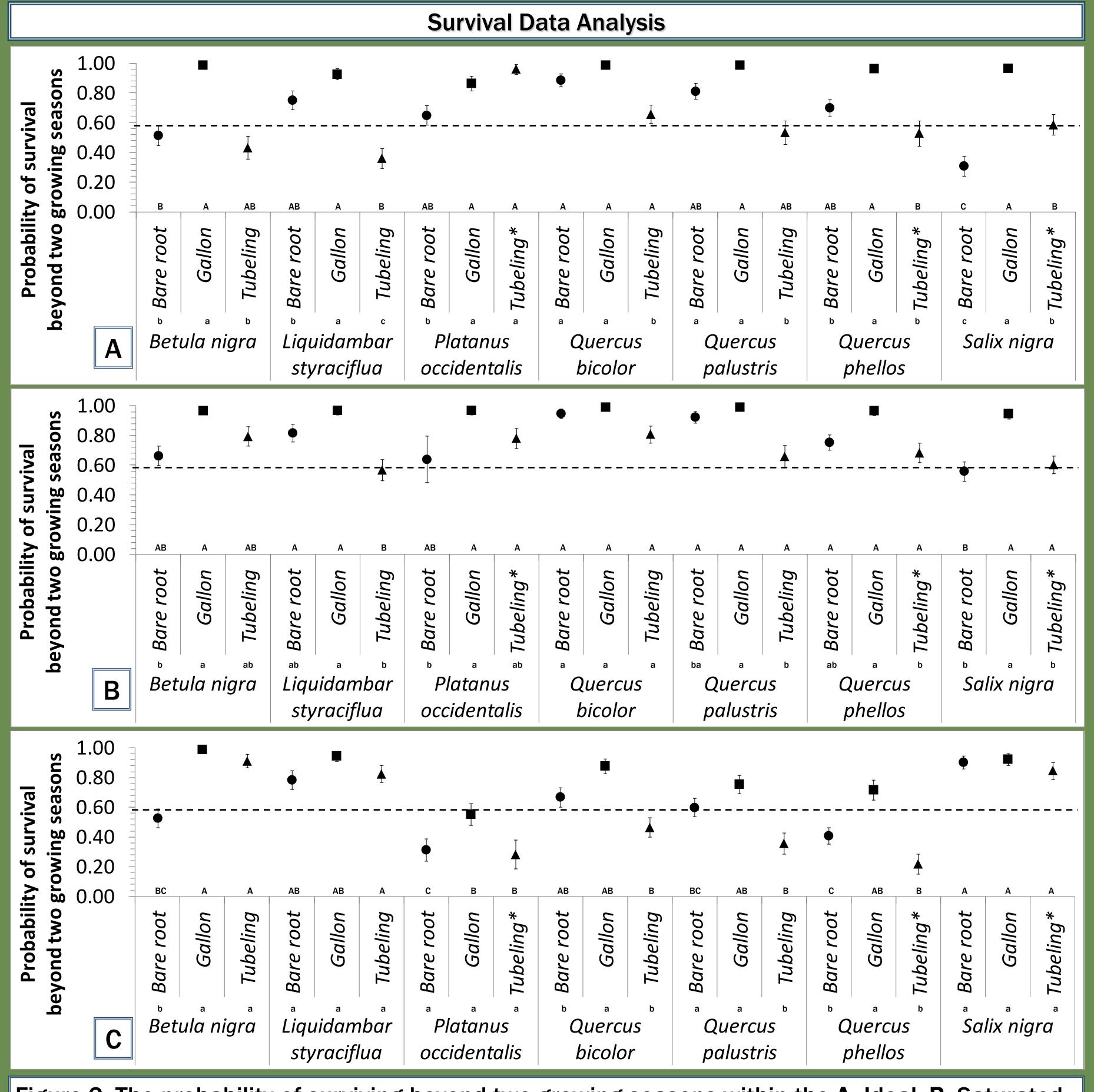
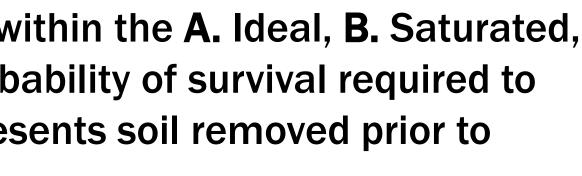
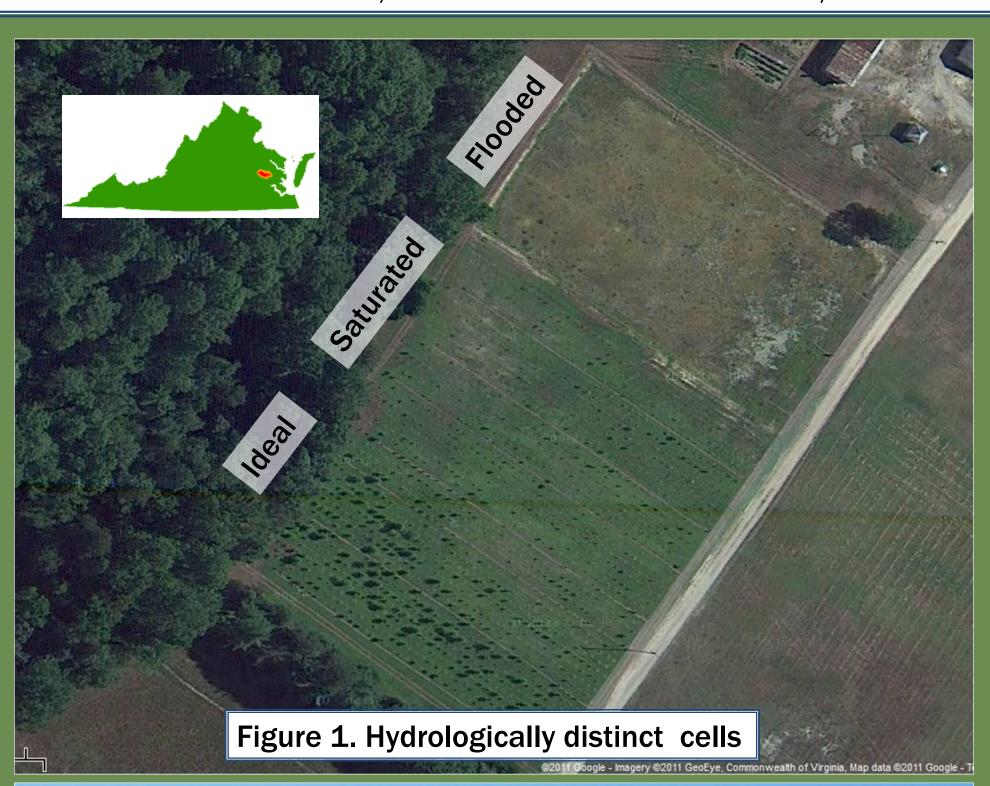
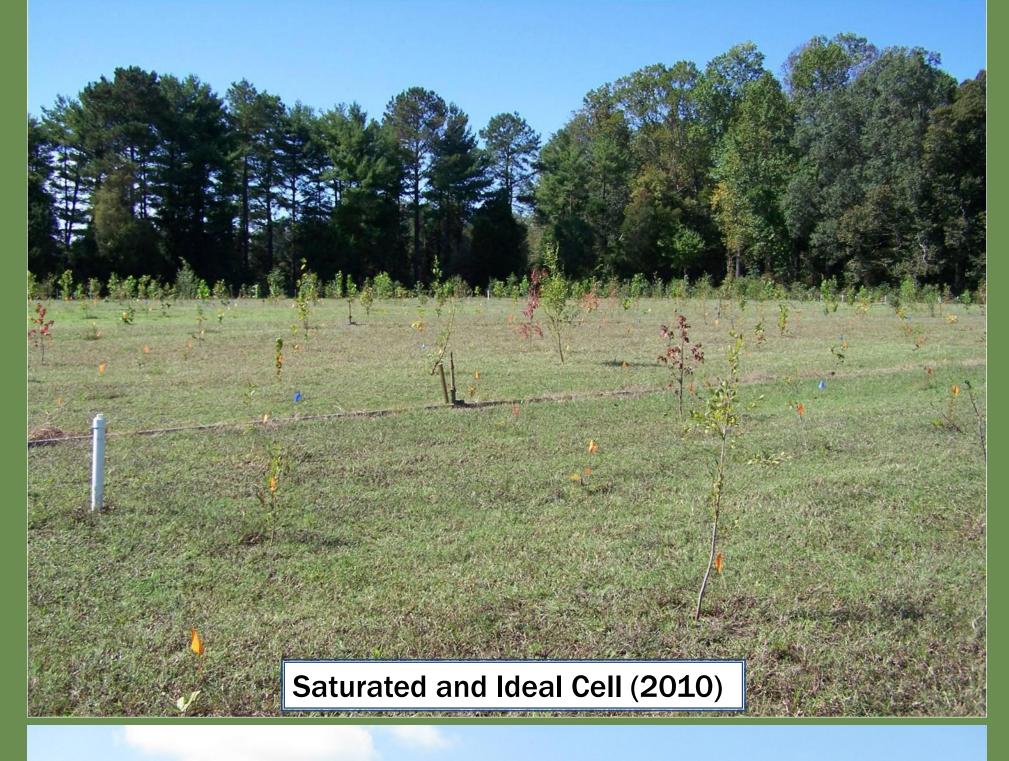


Figure 2. The probability of surviving beyond two growing seasons within the A. Ideal, B. Saturated, and **C.** Flooded cells. The dashed line represents the minimum probability of survival required to ensure 990 stems/ha. Error bars represent standard error. * Represents soil removed prior to shipping. (Lowercase letters represent no significant difference among stocktype, uppercase represent no difference among species, p>0.05)


Economic Data Analysis											
			Ideal Cell			Saturated Cell			Flooded Cell		
Species	Stocktype	Price	% Survival	Initial Density	Cost per	% Survival	Initial Density	Cost per	% Survival	Initial Density	Cost per
		(\$/Tree)		Required	ha		Required	ha		Required	ha
Betula nigra	Bare root	0.65	39.6	2274	\$1,478	57.1	1575	\$1,024	28.8	3124	\$2,030
Betula nigra	Gallon	3.25	92.9	969	\$3,150	90.5	995	\$3,233	83.7	1075	\$3,494
Betula nigra	Tubeling	1	29.7	3027	\$3,027	71.1	1267	\$1,267	69.2	1300	\$1,300
Liquidambar styraciflua	Bare root	0.65	68.1	1322	\$859	<mark>69.8</mark>	1290	\$839	36.6	2460	\$1,599
Liquidambar styraciflua	Gallon	3.25	88.9	1012	\$3,291	90.7	992	\$3,225	76.7	1173	\$3,811
Liquidambar styraciflua	Tubeling	1	19.0	4725	\$4,725	39.1	2300	\$2,300	45.0	2000	\$2,000
Platanus occidentalis	Bare root	0.56	57.1	1575	\$882	33.3	2700	\$1,512	0.0	NA	NA
Platanus occidentalis	Gallon	3.25	80.0	1125	\$3,656	90.9	990	\$3,217	25.6	3518	\$11,434
Platanus occidentalis	Tubeling*	1	88.9	1012	\$1,012	64.9	1387	\$1,387	4.8	18900	\$18,900
Quercus bicolor	Bare root	0.65	77.4	1163	\$756	89.1	1010	\$656	28.3	3185	\$2,070
Quercus bicolor	Gallon	3.25	92.5	973	\$3,162	92.9	969	\$3,150	57.1	1575	\$5,119
Quercus bicolor	Tubeling	1	50.9	1767	\$1,767	70.2	1282	\$1,282	10.2	8820	\$8,820
Quercus palustris	Bare root	0.65	70.6	1275	\$829	81.0	1112	\$723	7.3	12375	\$8,044
Quercus palustris	Gallon	3.25	92.9	969	\$3,150	89.1	1010	\$3,282	27.7	3254	\$10,575
Quercus palustris	Tubeling	1	29.7	3027	\$3,027	50.0	1800	\$1,800	7.7	11700	\$11,700
Quercus phellos	Bare root	0.65	50.8	1770	\$1,150	60.9	1479	\$961	12.5	7200	\$4,680
Quercus phellos	Gallon	3.25	85.4	1054	\$3,426	87.5	1029	\$3,343	37.2	2419	\$7,861
Quercus phellos	Tubeling*	1	36.7	2455	\$2,455	58.8	1530	\$1,530	0.0	NA	NA
Salix nigra	Bare root	0.48	5.4	16650	\$7,992	32.7	2756	\$1,323	80.4	1119	\$537
Salix nigra	Gallon	7.95	86.0	1046	\$8,315	86.4	1042	\$8,285	77.8	1157	\$9,199
Salix nigra	Tubeling*	1	38.3	2350	\$2,350	37.3	2414	\$2,414	78.6	1145	\$1,145
	• • • • • • • • •				I	T Ie e 14114					


Table 1. Economic comparison of species and stocktypes. The initial density required is the number of trees needed to reach the >990 stems/ha ecological performance standard based on the percent survival for each combination. * Represents soil removed prior to shipping. Highlighted cells are lowest values.


Two Year Survival and Growth of Seven Wetland Tree Species in Three Hydrologically Distinct Habitats

HERMAN W. HUDSON III AND JAMES E. PERRY VIRGINIA INSTITUTE OF MARINE SCIENCE, COLLEGE OF WILLIAM & MARY, GLOUCESTER POINT, VA

- >10% increase in height/year
- Introduction of planted trees
- Poor quality nursery stock Unfavorable site conditions Improper planting techniques

Results and Discussion

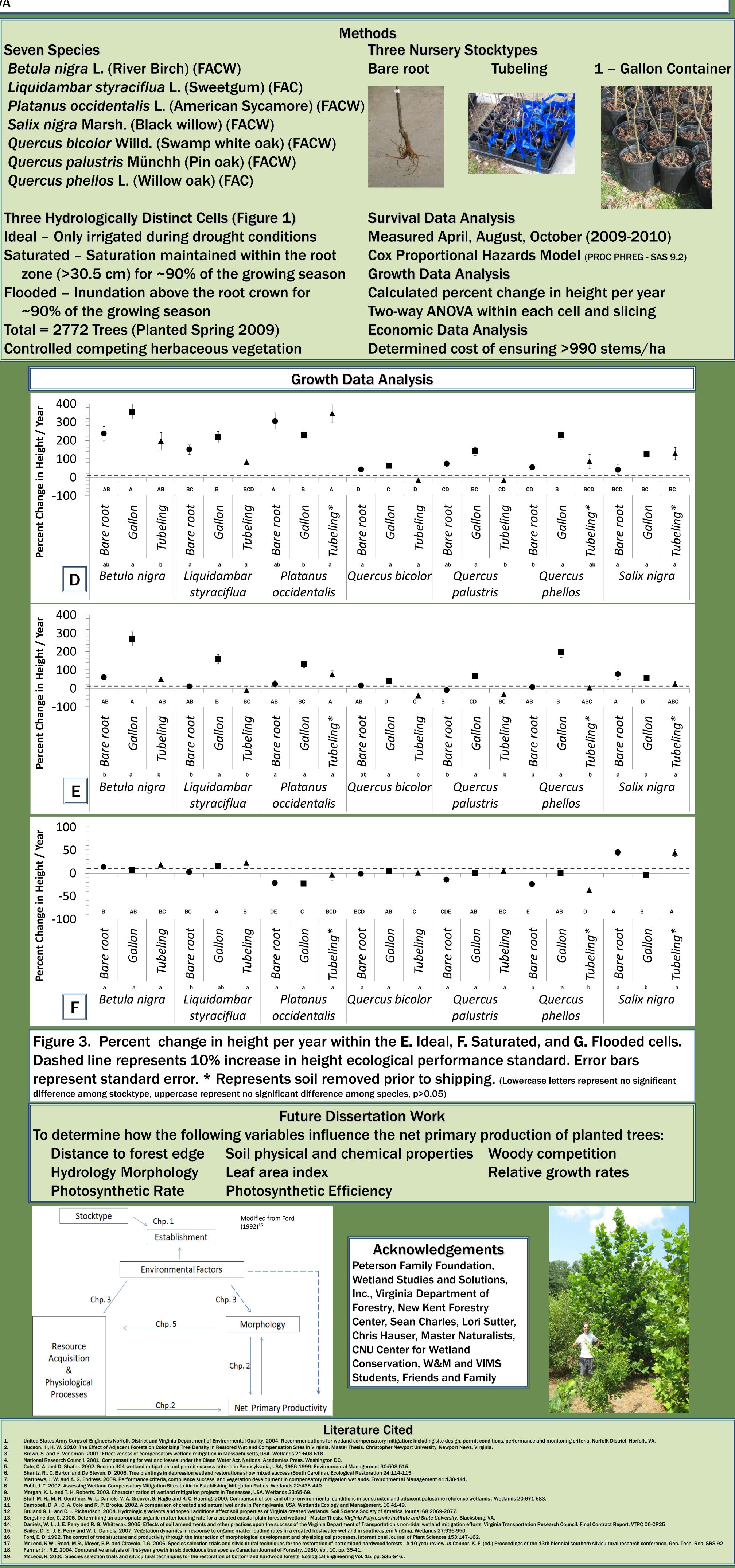
Survival

There was significant three-way interaction among cell, species and stocktype (p=0.0089), suggesting that the species and stocktype did not have similar probabilities of survival among each cell. Gallon stocktypes frequently had greater survival than other stocktypes and all species had similar survival probabilities within each cell (Figure 2). Gallon stocktypes may have increased root mass allowing for increased uptake of water and all species were matched to hydrologic conditions. Few species-stocktype combinations exhibited less than 58.8% survival in the Ideal and Saturated cells, while 6 combinations had less in the Flooded cell, including all three oak species.

Growth

There was significant three-way interaction among cell, species and stocktype (p<0.001). No stocktype consistently had greater positive percent change in height, suggesting stocktype has little influence on height growth. The primary successional species had marginally greater percent change in height in the Ideal cell, while species had similar growth within the Saturated and Flooded cells (Figure 3). Very few species-stocktype combinations satisfied the 10% increase in height standard within the Flooded cell, suggesting trees planted under stressful hydrologic conditions may not reach this required performance standard.

Economic Analysis


Gallon stocktypes often had the lowest initial planting density required to reach the >990 stems/ha performance standard, however due to the low cost, the bare root stocktype often was the least expensive per ha to ensure >990 stems/ha. This suggests that based on purchasing cost only, the bareroot stocktype is often the most economical choice.

Conclusion

Gallon stocktypes and primary successional species do not always out perform other stocktypes and secondary successional species. Forested wetland compensation efforts should focus on planting increased amounts of bare root stocktypes to ensure adequate survival.

Seven Species

Betula nigra L. (River Birch) (FACW) Quercus phellos L. (Willow oak) (FAC)

