
 
 

Climate envelope models (CEMs) are a subset of species distribution models 

(SDM) which attempt to define a species’ climate “niche.” CEMs correlate species 

presence locations to a set of climatic variables, which are commonly derived 

Because of the lack of conclusive improvement in model metrics and high 

spatial correlation between models with/without extremes, this study provides 

little support for universal addition of extreme variables to CEMs. Several factors 

may have contributed to this: 
 

Three metrics were used to evaluate model performance - area under the receiver operating 

characteristic curve (AUC), Cohen’s kappa, and the True Skill Statistic (TSS). For all species together, 

there were no significant one-way changes in average model performance according to these metrics, 

with only small changes for 
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Table 1. Species (or subspecies) for which 

models were created 

Common name presences 

Birds 

Cape Sable seaside sparrowa 54 

Florida grasshopper sparrowa 43 

Florida scrub jay 424 

Audubon’s crested caracaraa 425 

Everglades snail kitea 184 

Mammals 

Florida bonneted bat 10 

Key deera 9 

Silver rice rata 12 

Key Largo cotton mousea 8 

Southeastern beach mousea 26 

Anastasia Island beach mousea 14 

Florida panthera 784 

Lower Keys marsh rabbita 11 

Reptiles 

American crocodile 74 

Bluetail mole skinka 16 

Sand skink 28 
a subspecies 

Please contact david.bucklin@gmail.com for more information on this project. More information on the climate envelope  

modeling project at UF-FLREC can be found at http://crocdoc.ifas.ufl.edu/projects/climateenvelopemodeling/. 

individual species.  

A test of spatial 

correlation (r) revealed how 

similar the testing/training 

models (n=100) were 

relative to the “default” 

model run with 100% of 

occurrence data (n=1). On 

average, models including 

extremes had significantly 

higher spatial correlation 

(paired t-test, n=16, mean = 

+0.014, p<0.05). This effect 

was primarily evident for 

the species with higher 

prevalence and larger 

ranges. Spatial correlation 

between “default” models 

with and without extremes 

was generally high, ranging 

from 0.87 (Bluetail mole 

skink) to 0.99 (Lower Keys 

marsh rabbit). Model output 

and metrics for 8 species are 

shown in Figure 2. 

MaxEnt’s output includes 

variable contribution and 

permutation importance 

Figure 2. Model spatial predictions (“default” model, threshold at 10% 

occurrence probability value, metrics (calculated as mean value for 100 model 

runs with 75/25 training/testing split), and occurrences for eight species 

Figure 4. Model predictions 

for the Bluetail mole skink 

(following Figure 2) 

Figure 1. Percentage of contiguous U.S. area 

affected by climate extremes as measured by 

NCDC’s Climate Extreme Index, 1910-20112 
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Climate extremes increasing since 1970 

from mean monthly values of 

temperature and precipitation over 

a specified historic period 

(generally 30 years or more).  

Mean variables smooth out the 

variability in the climate record, 

ignoring potentially deterministic 

factors such as rainfall events, 

droughts, hurricanes, and high/low 

temperature events. Despite 

generally occurring on a short time 

scale, extreme weather/climate 

events can impact many aspects of 

a species’ biology, including  

events (such as droughts and 

hurricanes) can even lead to 

extinctions of entire populations.1 

Recent historical evidence points 

to an increase in extreme climate 

(Figure 1), generally associated 

with ongoing climate change. 

In this study, CEMs were built 

for 16 threatened and endangered 

(T&E) vertebrate species or 

subspecies occurring in 

peninsular Florida and the Keys. 

To identify the impact of extreme 

variables in CEMs, two models 

were built for each species. The 

first set of models (“means”) 

were built using eight bioclimatic 

variables derived from monthly 

means for the 30-year period 

1981-2010. The second, (“means 

+ extremes”) added eight extreme 

variables to the predictor pool 

(listed in Materials and Methods 

diagram). 
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most overall). Temperature seasonality was also 

the most important variable; however, 1-year 

return extreme minimum temperature (Figure 

3b) was the most important extreme climate 

variable (but only 4th most overall). Variables 

representing tropical storms (Figure 3c) and 

hurricanes generally contributed little to the 

models and had low importance scores. 
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• Correlation - extreme temperature and precipitation variables created for this 

study were all highly correlated  with at least one “mean” climate variable                 

(r > 0.84), limiting the amount of novel information they could provide 

• Temporal correspondence - due to scarcity of occurrence data for most 

species, some occurrences from outside the temporal domain were used; this 

may be more relevant to extreme climate due to its short-term impact 

• Spatial scale - while climate undoubtedly plays a role in species distributions, it 

is possibly a more appropriate determinant at courser scales and across a wider 

geographic domain than used in this study 

• Applicability for some study species – many T&E species are inherently 

range-limited, possibly not fulfilling their full abiotic niche.  Extremes play a 

more important role at species’ range edges1; as such, many T&E species have 

already had their ranges reduced by non-climatic factors (anthropogenic effects, 

habitat loss/change, competition, etc.). 
There was some evidence that adding extremes was beneficial for the most 

prevalent species - TSS and spatial correlation were improved for the four species 

with the most occurrences. The overall significant improvement in spatial 

correlation does not indicate that models including extremes were “better” - just 

more similar to the “default” model. 

Addition of extremes will probably be most 

beneficial is cases where there are empirically-derived 

physiological limits or well-documented responses to 

climate/weather events, allowing for hypothesis 

testing and better predictions into future climates. In 

this study, the Bluetail mole skink showed the greatest 

improvement with the addition of extremes (Figure 4). 

Looking just at extreme temperatures, the envelope of 

daily minimums and maximums are fairly small 

(between -3.8⁰ – -2.7⁰ C and 36.7⁰– 36.9⁰ C, 

respectively), with the minimum likely near the 

ectotherm’s limit. This may currently deter range 

expansion, but increases in minimum temperatures 

may allow for expansion, provided habitat is available. 

While climate changes’ effect on extreme precipitation events are uncertain, 

extreme temperatures are expected to increase with some certainty.7 For wide-

ranging species, or those with populations near known physiological limits, CEMs 

with the addition of extreme temperatures alone could provide valuable 

information for conservation managers planning for climate change. 

metrics for each model run. Across all species, temperature seasonality (Figure 3a) contributed the most 

to the models, with maximum diurnal temperature range contributing the most among extremes (and 2nd 

individual fitness, morphology, timing of activity, and distribution; certain extreme  
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created 

8 “extreme” variables 
Daily extreme max. temp., 1-year return 

Daily extreme min. temp., 1-year return 

Mean annual max. diurnal temp. range 

1-day precip. event, 1-year return 

7-day precip. event, 1-year return 

Mean annual # of precip. days >=50 mm 

Tropical storms (total # within 40km) 

Hurricanes (total # within 40km) 

“means” model 

(“default”); 100% of 

data (n=1) 

“means+extremes” 

models created with 

all 16 variables 

8 most 

important 

variables 

selected “means+extremes” 

models, with 75/25 

training/testing split   

(n = 100) 

“means+extremes” 

(“default”) with 100% 

of data (n=1) 

“means” models,  

with 75/25 

training/testing split  

(n = 100) 
16 species’ presence 

datasets (Table 1; 

from literature/online 

sources) 

MaxEnt 

3.3.3a6 

MaxEnt 

3.3.3a6 

MaxEnt 

3.3.3a6 

All variables were resampled to a 4-km resolution and clipped to the state of 

Florida boundary prior to modeling. A “one-year return” indicates a daily extreme 

value/event that happens once a year, on average. Tropical storms and hurricanes 

are defined as storms with winds greater than 34 and 64 knots, respectively. 
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8 “mean” variables 
Annual mean temp. 

Temp. seasonality 

Max. temp. of warmest month 

Min. temp. of coldest month 

Annual precipitation 

Precipitation seasonality 

Precipitation of wettest quarter 

Precipitation of driest quarter 

Figure 3a,b,c. Three study variables 

b a c 


