USGS

science for a changing world

Quantlfymg How Water Level Variability Affects Plant Specles Populations Using Paleoecological and Hydrological Time Series Data
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fig 1). Period of record: 1895 to 2011.

. @ Hydrologic Data
Water-level data from Site 9 (fig. 1) were downloaded from the

South Florida Water Management District DBHYDRO database
(http://www.sfwmd.gov). Period of record: 1954 to 2010.

| @ Plant Species Assays

U.S. Geological Survey data (unpublished) from seven cores were
used for this study (fig. 1). The data included the relative abundance
of 83 plant species using pollen counts and age models for each
core. The age models for the cores varied from 380 to 1,470

'U.S. Geological Survey, Columbia, SC 2Advanced Data Mining Services, LLC, Greer, SC

2U.S. Geological Survey, Reston, VA

Changes in meteorology and hydrology have historically led to variations in the populations of different plant species in the Florida
Everglades (fig. 1). Intact soil cores from the Everglades marshes provide valuable data on historical changes in vegetation and
hydrologic conditions. Pollen and surface water-level data from the Arthur R. Marshall Loxahatchee National Wildlife Refuge and data
from three long-term meteorological monitoring stations were used to develop empirical predictive models of plant distributions from
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Vegetation Modeling Approach

The modeling goal was to develop numerical models that predict the relative abundance of the four vegetation classes (table 1) as functions of water level. The inputs to the models are
derived monthly water levels for Site 9 in addition to the most recent class abundance, which represent an “end condition”. The vegetation models are “sub-models” that collectively
comprise a “super-model” (fig. 3). The steps taken to develop the super-model were as follows.

1. Develop Model 1 to generate a low-frequency
component of Site 9 water levels using monthly
counter input by fitting the hindcasted data (fig.2)

2. Configure a stacked dataset that combines

ANN models to learn input-output relations that are
common to all of the cores. The dynamic data
included the hindcasted hydrology and class
relative abundance ratios. The static data included
the locations of cores and end-condition ratios.

Model Results and Discussion

From the prediction plots (fig. 4) and the model
performance statistics (coefficient of determination and
percent model error of the ANN Model training and
testing datasets listed on table 2, it appears that
long-term rather than short-term water-level change is

3. Develop Models 2 to predict the low-frequency
variability of each class ratio using the stacked

outputs were the Models 2 residuals.

5. The final

Figure 4. Measured and predicted class assignments from the Models 2 and
Models 3 for each core. Locations of cores shown in figure 1.

predicted class ratios are the
summation of the predictions from the Models 2
and Models 3 (fig. 4).

Figure 3. Super-model architecture showing connections of sub-models.

Site Ineasurea

Class 3neasired

Classpgd™

Class 4esigual eror

Class 1peqcted
Class 2jeqicted —, [ Models 3 |1
Class 3peqiced —|  High @

- 4Drm|m_‘\':{ejc:’“

Class 1fina) prediction
Class 2fnq) prediction
Class 3y prediction
Class 4gna) prediction

04-9-21-2 04-9-20-6 00-3-7-1 EPA7 02-5-20-3 02-5-20-4

Core: 05-7-26-04

EXPLANATION
.

calibrated years before the present (Traverse, 2007). the primary driver of the plant population distribution. - * Class 1 measured  —Class 1 modelprediction [l
cl A I . The high frequency variability in the final model " . e :g::z:gzggz:gzg:g:g:
uster Ana ySIS predictions (fig. 4) is not much different than the Models * Class 4 measured — Class 4 model prediction

Transforming large numbers of parameters, such as the
83 plant species’ relative abundance ratios, into a small
set that accurately represents observed process
behaviors is a means to reduce the dimensionality and
complexity of analysis and modeling problems. The
method for clustering the time series into a small set of
classes is described by Roehl and others (2006). Only
data overlapping the meteorological data were used in the
study, leaving 67 (of the 83) assays from the seven coring
sites. Twenty-three species with relative abundance of at
least 0.05 (5 percent) for one or more of the 67 assays
were used for the cluster analysis. Table 1 lists the
resulting four class assignments of the “top 23” plant taxa
time series.
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Table 1. “Top 23" Taxa and their class assignments.
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Figure 1. Location of data collection sites used in this study.

Figure 2. Measured and hindcasted monthly water levels
for Site 9 for the period 1923 to 2010.

Hindcasted Hydrology

To obtain concurrent data between the three datasets, the e
surface water-level data from Site 9 (fig. 1) were appended
with hindcasted data back to 1923 using an artificial neural
network (ANN) model as described by Jensen (1994). The

~——Measured - Hindcasted

2 predictions and the coefficient of determination for the
Models 3 indicate that the models capture less than 10
percent of the high frequency variability of the data. The
Models 2 are probably adequate for estimating long-term
plant distribution; Models 3 predict only a little of the high
frequency variability in the class assignments. While
there are potentially several sources of error, such as
hindcasted Site 9 water-level data and unaccounted
ambient temperature change, it is perhaps most likely
that the assay dates are insufficiently accurate to be
correctly synchronized with the stage and meteorological
data. Errors of plus or minus a year or two for each assay
would prevent ANNs from learning cause-effect
relationships on a seasonal time scale.

Relative species ratios

~Models 2 prediction

B

Table 2. Performance statistics for the artificial neural network sub-models.
[N, count; R2, coefficient of determination; PME’, percent model error]

4000 5000 4000
1895 — 2011, 1-month time steps

1 The percent model error is the root mean square error of the model
predictions divided by the range of the observed data. r
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123 These taxa were not combined for this analysis - !

For more information, please visit the EDEN web at:
http://sofia.usgs.gov/eden
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1 The percent model error (PME) is the root mean square error of the model predictions
divided by the range of the observed data.
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