Influences of Salinity Intrusion on Belowground Decomposition: Implications for Surface Elevation Change

Camille L. Stagg1
Nicole Cormier1, Ken Krauss1, William Conner2, Don Cahoon3

1U.S. Geological Survey, National Wetlands Research Center, Lafayette, LA
2Clemson University, Baruch Institute of Coastal Ecology and Forest Science, Georgetown, SC
3U.S. Geological Survey, Patuxent Wildlife Research Center, Beltsville, MD
Experimental Design

Salinity Gradient

<table>
<thead>
<tr>
<th>Depth</th>
<th>Upper</th>
<th>Middle</th>
<th>Lower</th>
<th>Marsh</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Depth</th>
<th>Upper</th>
<th>Middle</th>
<th>Lower</th>
<th>Marsh</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Salinity Gradient Diagram](image25)
Methods

Roots and Rhizomes
• Litterbags
• Labile and refractory materials
• Long-term = 1 year
• Single exponential decay model: \(Y = ae^{-kt} \)

Cellulose
• Cotton Strips
• Labile material only
• Short-term ~ 14 days
• %Tensile strength lost
Physico-chemical Drivers of Decomposition

- Temperature
- Sea-level Rise
- River Flow
- Soil Redox
- Salinity
- Sedimentation
- Surface Elevation
- Organic Matter Composition
- Subsidence
- Decomposition
- Plant Growth
- Biomass Accumulation
Physico-chemical Drivers of Decomposition

Temperature
- 10 cm depth
- April 2011-October 2011

Redox
- 10 cm, 25 cm, 50 cm depth
- October 2010, 2011

Salinity
- October 2010-2011, 60 cm well depth

Organic Matter Composition
- Root and Rhizomes, initial material
- Lignin, Cellulose, Total Carbon, Total Nitrogen
Depth Effect
Roots and Rhizomes

P = 0.7609
Depth Effect
Cellulose

P < 0.0001
Hydrology

Waccamaw Upper

Waccamaw Middle

Waccamaw Lower

Waccamaw Marsh
Site (Salinity) Effect
Root and Rhizome Decomposition

P < 0.0001
Site (Salinity) Effect
Root and Rhizome Decomposition

P = 0.0203

\[\text{Upper} \quad \text{Middle} \quad \text{Lower} \quad \text{Marsh} \]

% Mass Remaining

Landscape Salinity Gradient
Physico-chemical Characteristics

Redox

Salinity

Soil Temperature

- P < 0.0001
- P = 0.0663
- P = 0.0856
Root and Rhizome Decomposition

<table>
<thead>
<tr>
<th>Pearson Product-Moment Correlations</th>
<th>Redox Potential (mV)</th>
<th>Temperature (°C)</th>
<th>Porewater Salinity (ppt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Mass Remaining</td>
<td>r = -0.18041</td>
<td>r = 0.47682</td>
<td>r = 0.38309</td>
</tr>
<tr>
<td></td>
<td>P = 0.5037</td>
<td>P = 0.2322</td>
<td>P = 0.1430</td>
</tr>
</tbody>
</table>

% Mass Remaining vs. Salinity (ppt)

- r = 0.38309
- P = 0.1430
Root and Rhizome Decomposition

Landscape Salinity Gradient

% Mass Remaining

P=0.0203

Upper: A
Middle: A
Lower: A
Marsh: B

> 3ppt
Root & Rhizome Chemical Composition

<table>
<thead>
<tr>
<th>Site</th>
<th>Lignin</th>
<th>Cellulose</th>
<th>Carbon : Nitrogen</th>
<th>Lignin : Nitrogen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper</td>
<td>35.1 (3.9) a</td>
<td>20.3 (0.9) bc</td>
<td>44.5 (1.2) bc</td>
<td>35.8 (1.5) b</td>
</tr>
<tr>
<td>Middle</td>
<td>34.9 (0.6) a</td>
<td>22.4 (0.9) ab</td>
<td>48.7 (3.8) b</td>
<td>38.6 (2.9) a</td>
</tr>
<tr>
<td>Lower</td>
<td>26.5 (6.0) b</td>
<td>18.0 (1.7) c</td>
<td>41.1 (0.9) c</td>
<td>29.0 (3.4) d</td>
</tr>
<tr>
<td>Marsh</td>
<td>22.3 (1.3) b</td>
<td>24.2 (0.5) a</td>
<td>61.6 (2.9) a</td>
<td>32.0 (3.1) c</td>
</tr>
</tbody>
</table>

Different letters indicate significant differences between site/salinity treatments
Results
Cellulose

Landscape Salinity Gradient

CSTL day$^{-1}$

Upper | Middle | Lower | Marsh

P < 0.0001
Possible Mechanisms
Stimulated Decomposition of Labile Material

• Sulfate Introduction
 – Stimulated respiration
 – C- mineralization: Weston et al., 2011; Weston et al., 2006

• Nitrogen Availability
 – Salinity-induced plant mortality or stress with subsequent nutrient pulse, or lower Nitrogen uptake and increased Nitrogen availability.
Mineralization of Soil N

Pearson Product-Moment Correlations (n=120)

<table>
<thead>
<tr>
<th></th>
<th>Total sulfur</th>
<th>Conductivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>N mineralization flux</td>
<td>r = -0.088</td>
<td>r = -0.076</td>
</tr>
<tr>
<td>(µmol m⁻² d⁻¹)</td>
<td>P = 0.338</td>
<td>P = 0.412</td>
</tr>
<tr>
<td>N turnover</td>
<td>r = 0.017</td>
<td>r = 0.055</td>
</tr>
<tr>
<td>(d⁻¹)</td>
<td>P = 0.852</td>
<td>P = 0.551</td>
</tr>
</tbody>
</table>

Noe et al., *in review*
Cellulose Decomposition

<table>
<thead>
<tr>
<th>Pearson Product-Moment Correlations</th>
<th>Redox Potential (mV)</th>
<th>Temperature (°C)</th>
<th>Porewater Salinity (ppt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSTL day⁻¹</td>
<td>r = -0.03203</td>
<td>r = 0.39566</td>
<td>r = 0.08374</td>
</tr>
<tr>
<td></td>
<td>P = 0.9063</td>
<td>P = 0.3319</td>
<td>P = 0.7578</td>
</tr>
</tbody>
</table>

\[r = 0.08374 \]
\[P = 0.7578 \]
Indirect Effects

Salinity → Plant Growth/Mortality → Nutrients → Decomposition

- Salinity
+ Plant Growth/Mortality
+ Nutrients
+ Decomposition
Refractory vs. Labile

Refractory + Labile

- Upper: A
- Middle: A
- Lower: A
- Marsh: B

Labile

- Upper: C
- Middle: B
- Lower: A
- Marsh: B

% Mass Remaining vs. CSTL day⁻¹

Landscape Salinity Gradient: Upper Middle Lower Marsh

Filter: Refractory + Labile

Symbol: > 3ppt N

Bar charts showing the comparison of refractory and labile components across different salinity gradients.
Implications

Primary Production

Wetland Elevation

Decomposition
Implications: Surface Elevation Change

SLR 0.3 - 0.4 cm y⁻¹

P < 0.001

Landscape Salinity Gradient
Conclusions

• Decomposition of refractory organic matter is limited when salinity exceeds 3ppt.
• There is not effect of salinity on decomposition of refractory material between 0-3ppt
• Decomposition of labile organic matter is stimulated in the degraded forest. Stimulation may be due to nutrient pulse/increased nutrient availability resulting from salinity-induced plant mortality or stress.
• Decomposition of labile organic matter is limited in the marsh, either from adverse impacts of salinity on microbial activity or lack of nutrient availability.
• Marsh elevation is increasing and likely due to a combination of decreased organic matter decomposition and increased primary production.