Integrated Pest Management and Biological Control

Michael J. Grodowitz
U.S. Army Engineer Research and Development Center
Vicksburg, MS
Important Questions

• What is IPM?
• What is biocontrol?
• Underlying concepts?
• Safety?
• Effectiveness?
• Integration?
• Players – Agents?
• Future?
What is IPM???

In simple terms:

A procedure to manage pest populations by HARMONIZING all available control methods.

Complement - Match - Balance
What is IPM?
Process of evaluating all available tools and then using those tools in a combination that will achieve management objectives for a given aquatic system (Hoyer and Canfield 1997).
What is IPM???

• Definition more detailed:
 – Examine if infestation impairs or benefits
 – Understand plant and water body ecology
 – Set management goals
 – Consider all tools and select the best options
 – Develop monitoring strategy
 – Implement educational program
While this approach can be effective it tends to provide only short term control by neglecting the underlying reasons for the formation of the infestations.
Example: ‘Successional’ history of Caddo Lake, Texas

- Waterhyacinth
- American lotus
- Brazilian elodea
- Eurasian watermilfoil
- Giant salvinia
- Hydrilla
Ecological Approach to Aquatic Plant Management

Integration of approaches and methods into a pest management system, which takes into consideration the ECOLOGY of the environment and all relevant interactions that management practices may have upon the environment.
Ecological Approach to Aquatic Plant Management

- **Ecosystem approach**
 - Ecosystem management & restoration

- **Addresses underlying causative factors**

- **Which leads to management:**
 - Sustainable
 - Long-Term
Reasons for Invasiveness???

• Beyond the scope…
• But certain characteristics stand out
• Bottom-line
 – Not dealing with:
 – “Killer plants”
 – “Super plants”
 – Goes against all science
Invasiveness Characteristics

- Disturbance specialists
 - r-strategists or ruderal
- For example - Hydrilla
 - Rapid growth rates
 - Broad tolerance ranges
 - Early maturation and reproduction (fragmentation)
 - Dispersal adaptations (fragmentation)
 - Long-term survival (tubers)
Environmental Factors

Man-made and natural systems that lack vegetation

...Space to proliferate...
Unvegetated systems ...

- Man-made systems
 - Reservoirs - flooded land
 - Mainly in 1950’s and 1960’s
 - No provisions for aquatic vegetation
- Natural systems
 - Many have only minimal vegetation
 - Due to continual disturbance
 - Management practices

invite colonization!
Environmental Factors

Man-made and natural systems with high nutrient loads

...Ingredients to proliferate...
High Nutrient Loads

- Recognized since early 1960’s
- Point source
- Non-point source
 - Sewers/septic systems
 - Fertilization
 - Homes
 - Farms
 - Industry
 - Erosion
- Human population increases
Underlying Causative Factors
Biological

• Most problem species are non-native
• Introduced with no competent herbivores and diseases
• A biological factor that can have profound impacts
Melaleuca quinquenervia – U.S.
Melaleuca quinquenervia – Australia
Casuarina spp. – U.S.
Casuarina spp. – Australia
Hydrilla verticillata – U.S.
Hydrilla verticillata – China
Biological Control

• Differences due to:
 – Environmental factors

• More importantly:
 – Presence of herbivores
 – Impact of diseases
 – Not present in U.S.

• Example:
 – Melaleuca - > 150 herbivores
 – Hydrilla - > 110 herbivores/diseases
What is Biocontrol?

Introduction, by man, of parasitoids, predators, and/or pathogenic microorganisms to **SUPPRESS** populations of plant or animal pests.
Suppression

- Reestablish herbivores & diseases with plants
- Release small numbers
 - Population increase
 - Expansion in distribution
- Suppression is key
 - Stress the target
 - Reproduction
 - Growth
 - Height
 - Opening canopy
 - Long-term process
 - Takes years
 - Bring into lowered equilibrium
- Long-term sustainable control
Tremendous Capacity for Increase

Exponential Curve

TIME
POPULATION INCREASE
• Average generation time about 10 days
• Each female deposits about 120 eggs

• Resulting offspring in just three months would number >325 trillion individuals
• Encircle the equator >57,000 times
Factors regulating populations

- **Abiotic**
 - Weather
 - Climate
 - Shelter availability
 - Geographic barriers

- **Biotic**
 - Mortality
 - Various competitive effects (intra/inter)
 - Development
 - Predators and parasites
Maintenance at Realistic Levels

Logistic Curve

Regulatory Factors

TIME

POPULATION INCREASE
Biocontrol

- Minimize characteristics of disturbance specialist
- Decrease photosynthesis --- decrease growth
- Decrease reproduction
- For example:
 - Waterhyacinth weevils
 - Smaller height
 - Decreased flowering – less seeds
 - Less productivity
 - Purple loosestrife agents
 - Reduced shoot/root growth
 - Fails to produce seeds
Impact can be tremendous!

Herbivores Present
Herbivores Removed

Master’s Thesis – Julie Nachtrieb
Herbivore Impact to Native Plants

Entire ecology of pond was altered
Hydrilla Agents
Leaf-Mining Flies

- Two species established
 - *Hydrellia pakistanae* (1987)
 - *Hydrellia balciunasi* (1990)
- *H. pakistanae*
 - Widespread US distribution
 - Most damaging
 - Southeast
 - Northern Alabama
Hydrellia pakistanae

Adult

Larva feeding
Model: $v_1 = (0.647 + c \cdot v_2)^{0.059}$

$P_{\text{max}} = ((.647047) + (.059096) \cdot \% \text{ Damage})^{-.40575}$

$r = 0.997$
Hydrilla Only

Hydrilla + Natives

Current effect: $F(1, 116)=31.260, p=0.00000$

Vertical bars denote 0.95 confidence intervals

32% reduction in tuber numbers
2-fold reduction in tuber numbers

Current effect: $F(1, 116) = 7.8673, p = .00590$

Vertical bars denote 0.95 confidence intervals
Lake Seminole, FL
1999
SPECIES RICHNESS = 1.3358 + 0.01801 * PERSDAM
Correlation: r = .90606
Current effect: $F(1, 116)=.48237, \ p=.48874$

Vertical bars denote 0.95 confidence intervals

Hydrilla Only

Hydrilla + Natives

a

ab

b

c

a

b

c

TUBERS PER m2

NO HERBIVORY

HERBIVORY
Control Low Medium High
Leaf Damage
Percent Rooted

L (0-30%)
M (40-60%)
H (70-100%)
What is the Role of Biocontrol?

- Think IPM in ecosystem context
- Reduce or eliminate underlying causative factors
 - Environmental factors
 - Nutrient loads
 - Empty niche
 - Biological factors
 - Host-specific agents
 - Suppresses weedy characteristics
 - Reduces photosynthesis
 - Decreases productivity
 - Impacts reproduction
 - Allows natives to compete more favorably
What is the Role of Biocontrol?

- **Combine with native plant restoration**
 - Reduce availability of space
 - Decrease nutrient loads – act as nutrient sinks
 - Alters competitive pressures

- **Use traditional options in:**
 - High priority areas
 - When other methods not feasible
 - To reduce overall biomass
 - Followed by biocontrol
Is it safe? Host-specificity

Insects exhibit a range of feeding habits

Polyphagous – many food items - Generalist
Oligophagous – few food items
Monophagous – one food item - Specialist
Is it safe?
Host-specificity

- Thousands of species
 - Monophagous
 - Feed on single species
- Mechanisms
 - Nutritional
 - Defensive chemicals
- Millions of years of association
- Strong and binding relationship
Biological Control "Pipeline"
Overseas

• Surveys
 – Lists of potential agents
• Field records
 – Host-specificity
 – Damage potential
• Host-specificity testing
 – Less expensive
 – Specimens available
Quarantine

- Safe?
- Host-specific?
 - Feed & develop
 - Only on target plant
- US and overseas locations
- Assess agent potential
- Gather information
 - Release petition
 - TAG request
- Environmental assessment?
Approval for Release

- Approval from:
 - Animal and Plant Health Inspection Service
 - Plant Protection and Quarantine
 - APHIS, PPQ

- APHIS, PPQ solicits recommendations from Technical Advisory Group (TAG)

- Major Areas of Concern
 - Taxonomy
 - Test Plant List
 - Host Range Tests
 - Impact to Non-Target Plants
Technical Advisory Group
TAG

• Recommendations only to APHIS, PPQ
• TAG Membership
 – Bureau of Land Management
 – Bureau of Reclamation
 – Fish and Wildlife
 – National Park Service
 – National Biological Survey
 – Bureau of Indian Affairs
 – Canada & Mexico
TAG Membership Continued

- USDA, ARS
- USDA, APHIS
- USDA, CSREES
- Forest Service
- Documentation Center
- Corps of Engineers
- Environmental Protection Agency
- Weed Science Society
- National Plant Board
TAG Process

Petitioner
- Prepares petition for release
- Sends to APHIS-PPQ

TAG Executive Secretary
- Establishes time lines
- Sends to petition to TAG members

TAG Members
- Review and evaluate
- Synthesize comments from subject matter specialists
- Submit comments and recommendations

TAG Executive Secretary
- Logs and files comments and recommendations
- Sends to Chair

TAG Chair
- Consolidates recommendations
- Submits TAG recommendations to APHIS-PPQ, Petitioner, TAG members, and other interested parties

Petitioner
- Conducts more research, and
- Resubmits petition or test or plant list
- Discontinues effort, or
- Elects to submit application to APHIS anyway

Does TAG recommend release?

Yes

Petitioner submits permit application to APHIS. APHIS coordinates with State Plant Regulatory Officials

No

Subject matter specialists evaluate
Foundational Research

Biological Control "Pipeline"

Overseas
Quarantine
Release/Establishment
Evaluation
Technology Transfer
Large Numbers for Release

• Classical biocontrol
 – Small numbers direct from overseas populations
 – Limitations – dependant on natural dispersal

• Move toward mass-rearing

• Large-scale efforts using:
 – Ponds
 – Greenhouse
 – Salvinia agents
 – Hydrilla agents
 – Waterhyacinth agents

• Quantity versus Quality
Several state and Federal agencies
- DWF-LA
- Corps Districts
- LSU Ag Center

Considerations
- Environmental conditions
 - Temperature
- Plant impacts
- Plant nutrition
- Herbivores
- Population size
- Shipping
- Monitoring
- Quality

Large Numbers for Release

Genetic Bottleneck

Impacts
- Reproduction
- Dispersal
- Mating
- Feeding
- Host selection
- Development time
Determining Efficacy

- Determine establishment
- Assess impact
 - Numbers of agents
 - Plant damage
- Monitoring important consideration
 - Standardized
 - Consistent
 - Repeatable
- Numbers of agents
 - Released and Present
Salvinia Weevil Rearing Pond
LSU: Near Houma, LA

- Characterize weevil distribution
- Changes over time
 - Plants
 - Weevil numbers
- Sampling efficiency
Importance of Sampling

• Distribution has considerable impact
• Sample size extremely importance
• Important to know how many released
 – Gauge establishment
 – Determine impact
 • How long it takes?
 • How big an area will be affected?
 – More released the better – but:
 • Agents cost money
 • Best to release the minimum to get the job done!
Objectives
What is Success?

- Establishment
- Range Expansion
- Population Increase
- Impact
 - Minimal
 - Biomass Decrease
 - Propagule Decrease
Evidence Types

- Laboratory/Greenhouse Experimentation
- Field Observations
- Abiotic/Biotic impacts
Criteria for Success

• Important that ALL agree what is success!!
 – Project managers
 – Property owners
 – Fishermen
 – Researchers
 – Lake Managers

• Compare to Realistic Expectations
Technology Transfer

- Reports
- Scientific Literature
- Oral Presentations
- Posters
- Videos
- Fact Sheets
- Information Systems
APIS Online

Players - Agents

- Insect agents available
- Variety of plants
 - Alligatorweed*
 - Waterhyacinth*
 - Waterlettuce*
 - Hydrilla*
 - Eurasian Watermilfoil
 - Salvinia*
 - Purple Loosestrife
 - Salt Cedar
 - Melaleuca
- Biology, ecology, impact
Alternanthera philoxeroides (Alligatorweed)

- Three agents released
- Highly effective
- Months instead of years
Agasicles hygrophila
(Alligatorweed Flea Beetle)

- Others include
 - Alligatorweed Thrips
 - Alligatorweed Stem Borer
Eichhornia crassipes
(Waterhyacinth)

- Three agents
- Effective
 - Height
 - Seeds
 - Biomass?
- Long term
- Controversial
Neochetina eichhorniae/N. bruchi (Waterhyacinth Weevils)
Niphograpta albicuttalis
(Waterhyacinth Moth)

Formerly
Sameodes albicuttalis
Waterhyacinth

- **Effectiveness**
 - Long-term process
 - 3 to 5 years
 - Reduce plant height
 - Reduce flowering
 - Decrease biomass
 - Occurs
 - Flow
 - Winter conditions
 - Waterbody
 - ???

- **Disease**
 - Microsporidia
 - Reduce longevity
 - Egg production
Megamelus scutellaris
(Waterhyacinth Planthopper)
Megamelus scutellaris (Waterhyacinth Planthopper)

- Approval Feb. 2010
- Colonies established
 - Florida
 - Vicksburg
 - Louisiana
 - California
- Releases in Florida, Texas, Louisiana, California
- Tentative establishment – FL, CA
- Monitoring establishment success
- Probable high temperature limits???
- More work needed
Waterhyacinth

• Future
 – Of no use:
 • True bug, moth
 • Both fed on pickerelweed
 – Possible new agents
 • *Thrypticus* spp.
 • *Taosa inexacta*
 • Warm strain hopper
 – Implementation
 • Patience is a virtue
 • Use on low priority sites – source infestations
 • Release large numbers
 • Minimize use of chemicals
 • Monitor
Hydrilla verticillata
(Hydrilla)
Hydrilla Agents
Leaf-Mining Flies

- *Hydrellia pakistaniae*
- *Hydrellia balciunasi*
- Established
- Larva Damaging Stage
- Feeds on Internal Leaf Tissues
- Widespread U.S. Distribution
Hydrellia pakistanae

Adult and Eggs

Larva feeding
Is it effective?
Lake Seminole, FL

1994
Lake Seminole, FL
1999
How do you implement?

- Learn to identify agents/damage
- Examine field sites
 - Presence/absence
 - Assess populations/damage
- Augment – if needed
 - In the past flies were expensive
 - > $0.50 per fly
 - < $0.01 per fly
 - Modern mass-rearing facilities
 - Lewisville, TX
 - Vicksburg, MS
 - Arkansas
 - Released > 30 million
- Continue to monitor field sites
Salvinia molesta
(Giant Salvinia)
Cyrtobagous salviniae (Salvinia Weevil)
Sepik River, Papua, New Guinea

Before
Sepik River, Papua, New Guinea

After
Mass Rearing Efforts

- Research
 - High numbers/quality
 - Lowered costs
- Several rearing facilities
- Pond-based
 - South Louisiana (LSU)
 - Vicksburg (ERDC)
- Box-Based
 - Texas (LAERF, Caddo)
 - Northern distribution
 - Cold frames
Pistia stratiotes
(Waterlettuce)
Neohydronomus affinis

Waterlettuce

- Highly effective
- Used throughout the world
- Method of choice
- Used extensively in Texas
- Active use in Louisiana
- Excellent control Orlando, FL
Neohydronomus affinis
Waterlettuce

• **Identification**
 – Small (1.5 – 2.4 mm) weevil
 – Brown and blue coloration
 – Characteristic “smiling face” on wing covers
 – Larvae – cream color, acute angle at rear

• **Damage**
 – Adults – shotgun blast on leaves
 – Larvae – Tunneling in leaves
 – Very effective throughout the world
 – Biomass reduction typically 1.5 to 2 years

• **Collection techniques**
 – Berlese funnel extraction
 – Moving infested plants
 – Can be mass-reared
Fungal Pathogens

• Foundational/Basic
 – Biology/Ecology
 – Mechanisms of Control

• Applied
 – Development
 • Culturing
 • Formulation
 – Effectiveness
Applied

- Formulation development
- Cooperators
 - USDA, ARS – Peoria, IL
 - SePro – Rocky Mount, NC

- Agar Culture
- Liquid Culture
- Dry Granule
Foundational/Basic

1 g dry Mt 2 g Mt+Gl 2 g Mt+CMC Control
Applied

Integration with Chemicals
Synergistic Effect

Graph showing the dry weight hydrilla shoot biomass/g for different treatments:
- Control
- Fluridone 21 day
- Fluridone 35 day
- Mt liquid
- Mt dry
- Mt liq + 35 day Fluridone
- Mt liq + 21 day Fluridone
- Mt dry + 35 day Fluridone
- Mt dry + 21 day Fluridone
Future Directions

• In-country surveys
• Thirty three strains identified
 – Mean disease value of 3 or greater
• Further testing warranted
• Five strains
 – Mean disease value of 4
 – Four - *Mycoleptodiscus terrestris*
 – One - *M. roridum*
• Testing in progress
• Monoecious hydrilla pathogens
Active vs. Passive

- Biocontrol is **NOT** a passive technology
- Takes active participation
- Just like any traditional technology
- However, this rarely occurs
- Knowledge is the key
- Willingness to apply knowledge
 - Identification of agents and damage
 - Biology and ecology
 - Surveys
 - Re-release and augmentation
- Louisiana and Texas
Potential Future Directions

• **Overseas**
 - Eurasian watermilfoil
 - 2014
 - Hydrilla
 - ARS: 2009 – 2013
 - Indonesia, southern China
 - New stem weevils?
 - Monoecious hydrilla
 - Northern China
 - Korea – 2014
 - Origin - Genetics
 - Lack of funding

• **Waterhyacinth Planthopper**

• **Mass-rearing**
 - State/local level
 - Quantity vs Quality
 - Reduce costs

• **Use of Pathogens**
• Biocontrol
 – Agent approval
 – APHIS
 – Risk/Benefit
 – Tightened standard
 – FONSI
 – Harder to get agent approvals

• Overseas
 – Countries more reluctant
 • Allow potential agents to leave country
 • Protection of biodiversity
 • Money
 • Argentina
 • Impact - Warm climate strain – waterhyacinth planthopper