Advances in Aerial Herbicide Application for Drift Mitigation

2014 Aquatic Weed Control Short Course
Pat Minogue, Ph.D., R.F.

Associate Professor of Silviculture
University of Florida
School of Forest Resources and Conservation
Topics for Discussion

- Factors affecting drift potential
- Application of solids
- Aerial spraying, deposition efficiency
- Aircraft and equipment selection
- Effect of spray additives
- Environmental factors affecting drift potential and herbicide performance
Factors Affecting Drift Potential

- **Application parameters**, especially droplet size and spraying technique (nozzle selection, booms, aircraft, etc.)
- **Weather effects**, especially wind speed and direction, height of inversion layer
- **Tank mix effects**, product formulations, surfactants, emulsifiers, drift control agents
- **Research** by the Spray Drift Task Force and others provides some useful information for minimizing drift
Fixed-Wing Application
Helicopter Spraying
Rotor Vs. Fixed Wing

<table>
<thead>
<tr>
<th>HELICOPTER</th>
<th>FIXED WING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote Landing</td>
<td>Greater Payload</td>
</tr>
<tr>
<td>Maneuverable</td>
<td>Lower Costs</td>
</tr>
<tr>
<td>Slow Air Speed</td>
<td>More Potential for Off-Site Movement</td>
</tr>
<tr>
<td>Used in Sensitive areas</td>
<td>Not Permitted with Some Herbicides</td>
</tr>
</tbody>
</table>
Solids: Iso-Lair Bucket
Aerial Application of Solids

- Modified seeders and fertilizer spreaders are used to broadcast herbicide granules
- More difficult to control rate per acre and uniformity across the swath than sprays
- Carrier evaporation is not a concern
- Fines or dust in product formulations increase potential for off-site movement
- To avoid streaks or drift, do not apply when winds are gusty or exceed 5 mph
Small Droplets Give Good Coverage on the Leaf Surface

<table>
<thead>
<tr>
<th>Droplet Diameter (Microns)</th>
<th>Droplets on Leaf (Per Sq. Inch)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>92,250</td>
</tr>
<tr>
<td>100</td>
<td>11,750</td>
</tr>
<tr>
<td>200</td>
<td>1,425</td>
</tr>
<tr>
<td>400</td>
<td>180</td>
</tr>
<tr>
<td>800</td>
<td>22</td>
</tr>
</tbody>
</table>

Akesson and Yates, 1987, WSSA
Small Droplets Drift!!!

<table>
<thead>
<tr>
<th>Droplet Diameter (Microns)</th>
<th>Wind 1 mph</th>
<th>Wind 5 mph</th>
<th>Wind 10 mph</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1.5 miles</td>
<td>7.5 miles</td>
<td>14.5 miles</td>
</tr>
<tr>
<td>100</td>
<td>75 feet</td>
<td>375 feet</td>
<td>750 feet</td>
</tr>
<tr>
<td>300</td>
<td>8 feet</td>
<td>42 feet</td>
<td>83 feet</td>
</tr>
<tr>
<td>600</td>
<td>2 feet</td>
<td>11 feet</td>
<td>21 feet</td>
</tr>
<tr>
<td>800</td>
<td>1 foot</td>
<td>6 feet</td>
<td>12 feet</td>
</tr>
</tbody>
</table>

Hansen, 1965; see Akesson and Yates, 1987, WSSA
Evaporation Rate & Droplet Size

20 ft, 1 mph Wind, 25°C, 55%RH

<table>
<thead>
<tr>
<th>Droplet Diameter (Microns)</th>
<th>Droplet Disappears (Fall Distance)</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>--</td>
</tr>
<tr>
<td>150</td>
<td>15 ft</td>
</tr>
<tr>
<td>120</td>
<td>7 ft</td>
</tr>
<tr>
<td>100</td>
<td>3.5 ft</td>
</tr>
<tr>
<td>80</td>
<td>2 ft</td>
</tr>
</tbody>
</table>

Akesson and Yates, 1987, WSSA
Application Parameters Affecting Droplet Size Spectrum

- Orifice size and type of nozzle
- Nozzle discharge angle
- Pressure at the nozzle
- Application height
- Droplet shear, turbulence, airspeed
- Evaporative losses while airborne
Nozzle Selection

- Flat fans, disc-cores, cone nozzles can produce fairly coarse sprays by VMD if operated at low pressures and low nozzle angles.

- Solid stream nozzles can produce even coarser sprays by VMD if operated at medium pressures.

- *All of these also tend to produce some “fines”*

- Multiple-orifice solid stream nozzles such as TVB and Accu-Flo tend to produce very coarse sprays and few “fines” if operated optimally.
Aerial Spray Equipment

- **CONVENTIONAL**
 - Simplex(R) Boom
 - Warnell(R) Boom
 - Teejet(R) Disc-Core Nozzles
 - Raindrop(R) Nozzles

- **CONTROLLED DROPLET**
 - Microfoil(R) Boom
 - Thru-Valve(R) Boom
 - Microfoil(R) Nozzles
 - TVB(R) Nozzles
 - Accu-Flo(R) Nozzles
Microfoil® Boom
Thru-Valve Boom & Nozzle (TVB)
TVB 0.045 Pattern
TVB 0.028 Pattern
Accu-Flo Nozzle
Comparison of the percentage of fines with various nozzles spraying water

% < 153 um

Nozzle Type

- CP helicopter
- D10-46
- CP deflector 30
- CP solid stream
- Accu-Flo 0.016

Minogue 2004, FVMC
Boom Length

- Shorter boom lengths can greatly reduce drift, for rotary and fixed wing aircraft
- For fixed-wing aircraft, the greatest benefit is obtained when booms are <65% of wing length
- Will not necessarily decrease swath width sufficiently to require significantly more flight passes
GPS: Global Positioning Systems

- Documents path of the aircraft
- Delineates treatment area
- Very useful to determine airspeed to ensure correct calibration of spray volume and herbicide rates per acre.
- Can be integrated with injection systems to control delivery rate.
AG-NAV GPS

- Direction to Swath
- Cross-Track
- Direction to Intercept

Large Nav-Bar - External

Medium Nav-Bar - Internal
AG-Flow Flow-Control

Controls output volume based on ground speed
Application Practices: Swath Adjustment

- Most applicators already practice swath adjustment, a practice which can have a very large effect on reducing drift.
- Offset varies by wind speed and droplet size.
- Fly the pattern.
Tank Mix Effects

- Tank mix selection can have a large effect on droplet size from some nozzle types.
- Avoid the use of excessive non-ionic surfactant where possible (especially polyethoxylates).
- Emulsion adjuvants such as emulsified seed oils and organosilicones can reduce “fines”.
- “Drift Control” Polymers tend to increase VMD, but often also increase % “fines”, and may be affected by pumping and tank mix partners; not suitable with some nozzle types.
Herbicide/ Modified Seed Oil Tank Mixes

Minogue and Dexter, 2002, BASF Research Rpt. 2002-02
Polyethoxylate surfactants increase fines.

Percentage of Droplets < 153 microns

Minogue and Dexter, 2002, BASF Research Rpt. 2002-02
Meteorological Effects

- Wind speed and direction are key parameters affecting drift.
- Temperature and relative humidity can affect evaporation rates, so may also be important.
- Air stability important- most labels recommend not spraying under local surface temperature inversion condition.
Conclusions

- Select nozzle type to avoid fine droplets
- Carefully consider application methods and conditions
- Avoid great release heights
- Avoid high wind speeds
- Use short boom lengths and good application practices
- Avoid excessive (NIS) surfactant
- Use emulsion carrier to reduce fines