Carbon Sequestration Potential from Coastal Wetlands Restoration Sites

Paul Krause, Alyssa Beach
Emily Cooper, George Weber

ACES and Ecosystem Markets 2012
Ft. Lauderdale, FL
December 2012
Background

Tidal salt marsh habitat was once common in southern California

Only a fraction remain today

- Intentional filling
- Habitat degradation

Many that remain are impacted:

- Drainage from urban or agricultural land-use.
- Fed by highly channelized water conveyances.

Can experience increased sediment loading.
Carpinteria Sat Marsh
Study Site Carpinteria Salt Marsh

230 acres, 3 Basins

Largest basin (130 acres) is maintained through the University of California Natural Reserve System

Habitat

- Intertidal estuarine wetlands
- Adjacent palustrine wetlands
- Subtidal deep water habitat in channels.
Carpinteria Salt Marsh

Surrounded by developed land
Fed by channelized urban-creeks
Receives large amount of agricultural runoff
Narrow ocean mouth
- Sand plug present from beach sands
- Reduced intertidal flushing since mid-90s
Mountain wildfires increase sediment loading
Anecdotal history of a tsunami in 1812
Carpinteria Sat Marsh
Carpinteria Land Use

Marsh
Agricultural
Residential
Commercial
Restoration

Restoration is designed to improve water flow to historical areas and levels

- Dredging to restore the central lagoon
 - Removal of the Sand Plug
 - Removal of sand bars in Main Channel
- Replacement of basin connectivity
- Removal of greenhouse discharges (nutrients) to stream inputs.
California AB32 – Global Warming Solution Act 2006

- Requires all projects in CA to account for and report GHG emissions.
- Requires all projects to be carbon neutral

Carpinteria Salt Marsh Restoration

- Project will generate 85 metric tons of CO₂ equivalents
 - Dredging
 - Disposal
 - Culvert operations
 - Road work
 - Plant restoration
Restoration

What is the potential for the sequestration of GHGs (Carbon) over the life of the restoration? Can this be used to offset the 85 mT of CO$_{2e}$ generated in the project?

- Reviewed the GHG and Carbon Sequestration literature.
- Developed a simple box model for sequestration
- Developed site-specific information on key model input parameters
Carbon flux in a wetland

$\text{NEE} = \text{P} - \text{ER}$

- $\text{P} - \text{Photosynthesis}$
 - (CO$_2$)
- $\text{ER} - \text{Ecosystem Respiration}$
- Plant respiration
 - (CO$_2$)
- Soil respiration
 - (CO$_2$)
- Methane flux
 - (CH$_4$)
 - methane oxidation
 - methanogenesis
 - water export
 - (DOC, DIC, CH$_4$)

The world’s leading sustainability consultancy
Sequestration in a salt marsh wetland is a function of the natural accretion rate of sediment in the marsh, the organic carbon loading in the sediment, and plant respiration.

\[A_c = S_d \times C_f \times U_v \times D_s \times U_a \]

Where:

- \(A_c \) = Annual rate of carbon accretion per unit area (kg/m\(^2\)/yr)
- \(S_d \) = Sediment bulk density (kg/m\(^3\))
- \(C_f \) = Fraction of carbon in sediment (kg C/kg sediment)
- \(D_s \) = Annual rate of sediment deposition (mm/yr)
- \(U_a \) = Area units conversion factor = 10\(^6\) (mm\(^2\)/m\(^2\))
Sediment Deposition Study

Need to understand the deposition rate of sediment in the marsh

- 7 Sampling points in Basin 3
- 210Pb (7 cores)
- 137Cs (2 cores)

Results showed good relationship across the marsh
Sediment Sampling
Sediment Deposition Study Results

Sediment Deposition Rates (cm/yr)

- 0.1
- 0.2
- 0.3
- 0.7

Location:
- A
- B
- C
- D
- E
- F
- G
- H

Radionuclides:
- 210Pb
- 137Cs
Sediment Characterisation Study

Sediment characterization was focused on measurements of other physical parameters.

- Total Organic Carbon
- Grain Size
- Bulk Density

- Collected 36 surface sediment samples across the marsh
 - Sand Plug
 - March Surface
 - Channels
 - Inlet
Sediment Characterization Study Results
Model Results

Modeled output for two end states:

- One year post construction
- Seven years post construction

Modeled output for two levels of uncertainty:

- Upper and lower bounds on input parameters from field studies
Model Output

- Total CO2 Equivalent (Metric Tons):
 - Year 1 Estimate Bounds:
 - Salt Marsh Enhancement Project Construction: 85
 - Salt Marsh Sequestration (Year 1- Low): -17
 - Salt Marsh Sequestration (Year 1- High): -259
 - Year 7 Estimate Bounds:
 - Salt Marsh Sequestration (Year 7- Low): -108
 - Salt Marsh Sequestration (Year 7- High): -1118
Conclusions

■ Model was successful in helping determine the sequestration potential for project alternatives.

■ The low end estimate shows that it may take the full seven years to reach the potential to offset the project development CO$_{2e}$ output.

■ The high end estimate indicates that the project may significantly sequester more CO$_{2e}$ than the project development output.

■ This approach may be useful in determining the potential for other restoration sites.

■ The more site-specific data you have the better the model output.
Any Questions?