Valuing Ecosystems Services of Surface Waters Improved by Reducing Over Enrichment

Presented at the ACES and Ecosystem Markets

Fort Lauderdale, Florida
December 12, 2012
by
Mary Jo Kealy, PhD
CH2M HILL
Roadmap

- How does valuing ecosystems services fit into watershed management?

- Case Study: Valuing water quality improvements from reducing nutrients in Utah’s surface waters
 - Water Quality and how it affects Recreational Use and Enjoyment of Utah’s Waters
 - Willingness to Pay for Improving and Sustaining Water Quality for future generations

- Conclusions
Valuing Water Resources to Support Watershed Management

Value is derived from ecological services - “The functions a natural resource provides for other resources and for humans.”

Water & Water Resources

Direct Human Uses

Indirect

Passive Use

Existence value
Aesthetic value
Preservation of diversity
T&E species

Nesting Area for Birds
Breeding Area for Fish
Sediment Stabilization
Water Quality Enhancement

Many Others

Drinking Water
Wastewater Discharge
Cooling & Processing
Irrigation
Recreation
Sources & Effects of Nutrient Enrichment

Wastewater Stormwater Excess Nitrogen and Phosphorus Agriculture

Increased Algal Growth and Decomposition

Algal Toxins, Low Dissolved Oxygen, High pH

Aquatic life impacts: fish kills, reduced diversity, ecosystem function
Human health impacts: algal toxins
Aesthetic impacts: recreation and property value
Water treatment impacts: clogged intakes, taste and odor, disinfectant byproducts

Farmington Bay Matt Warner Reservoir San Pitch River
Benefit Cost Analysis (BCA) Framework for Valuing Ecosystem Services

Benefit Categories

1) Recreational Value (*CH2M Hill Team*)

2) Quality of Life/Passive Value (*CH2M Hill Team*)

3) Property Value (*CH2M Hill Team*)

4) Water Treatment Cost Savings (*DWQ*)
 - a) Drinking Water
 - b) Industrial/Agricultural Users

Cost Categories

1) Wastewater Treatment Upgrades
 - a) POTW - previously completed (*CH2M Hill*)
 - b) Industrial/CAFO Dischargers (*DWQ*)

2) Stormwater (*DWQ*)

3) Nonpoint Source Pollution (*DWQ*)

4) TMDL/Site Specific Criteria Administration (*DWQ*)

BCA compares the economic value with the Utah Nutrient Reduction Plan to the economic value without plan implementation.
RECREATION SURVEY
Recreation Survey

- Survey Objective: Collect data on how people use Utah’s surface waters
- Survey Purpose: Support analysis of how water quality improvements affect the value of the recreation experience
- Surveys completed with 1405 households
 - Weighted to assure sample is representative of all Utah households who engage in outdoor recreation
 - Relative to general Utah population, the recreation sample is:
 - more male, younger, and higher educated
Recreation Demand Modeling: Where Do People Go, and How Often?

284 total sites capturing over 67% of all water-based recreation trips.
Recreation Demand Modeling: Site Characteristics

- **Proximity:** Travel Cost
- **Lakes**
 - **Water Clarity:** TSI (Secchi Depth)
 - **Algae vs. Sediment:** TSI (Chl-a) – TSI (Secchi Depth)
- **Rivers**
 - **Algae:** Avg summer Dissolved Oxygen Saturation
 - **Nutrients:**
 - Avg summer Total Inorganic Nitrogen (mg/l)
 - Avg summer Total Phosphorous (mg/l)
Future Scenarios

131 Lakes and 153 Rivers

<table>
<thead>
<tr>
<th></th>
<th># Degrade</th>
<th># Constant</th>
<th># Improve</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status Quo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lakes</td>
<td>46</td>
<td>62</td>
<td>23</td>
</tr>
<tr>
<td>Rivers</td>
<td>73</td>
<td>64</td>
<td>16</td>
</tr>
<tr>
<td>Maintain WQ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lakes</td>
<td>0</td>
<td>108</td>
<td>23</td>
</tr>
<tr>
<td>Rivers</td>
<td>0</td>
<td>137</td>
<td>16</td>
</tr>
<tr>
<td>Improve WQ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lakes</td>
<td>0</td>
<td>85</td>
<td>46</td>
</tr>
<tr>
<td>Rivers</td>
<td>0</td>
<td>80</td>
<td>73</td>
</tr>
</tbody>
</table>
Aggregate Benefits of Alternative Water Quality Policies

<table>
<thead>
<tr>
<th></th>
<th>Status Quo</th>
<th>Maintain WQ</th>
<th>Improve WQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate*, discounted over 20 years</td>
<td>($50.8 million)</td>
<td>$142 million</td>
<td>$365.7 million</td>
</tr>
<tr>
<td>Average Annual Benefit (discounted)</td>
<td>($2.5 million)</td>
<td>$7.1 million</td>
<td>$18.3 million</td>
</tr>
</tbody>
</table>

*Assumes linear change in water quality to 20 years. Discount rate: 2.7%
TOTAL ECONOMIC VALUE SURVEY (IMPROVE AND SUSTAIN WATER QUALITY FOR FUTURE GENERATIONS)
Total Economic Value Survey

- Sample taken from all Utah households
 - Conducted August 2011
 - 2,700 surveys mailed
 - 25% response rate
- Intended to gauge the general population’s perception of trophic status and total willingness to pay to protect rivers and reservoirs from excess nutrients
We define a “User” as someone who spends some recreation time on or near Utah’s waters.

<table>
<thead>
<tr>
<th>Distribution of Utah Households by Water-based Recreation</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonuser</td>
<td>26.8%</td>
</tr>
<tr>
<td>User</td>
<td>73.2%</td>
</tr>
<tr>
<td>Both River and Lake</td>
<td>53.2%</td>
</tr>
<tr>
<td>River only</td>
<td>7.5%</td>
</tr>
<tr>
<td>Lake Only</td>
<td>12.5%</td>
</tr>
<tr>
<td>Public Opinions About the Importance of Water Quality Related Issues in Utah (%)</td>
<td>High importance</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Maintaining water quality for future generations</td>
<td>84</td>
</tr>
<tr>
<td>Improving water quality for fish and wildlife</td>
<td>63</td>
</tr>
<tr>
<td>Imposing water cleanup costs on industry</td>
<td>63</td>
</tr>
<tr>
<td>Maintaining good water quality in lakes and rivers so I can visit in the future</td>
<td>60</td>
</tr>
<tr>
<td>Keeping monthly water bills as low as possible</td>
<td>56</td>
</tr>
<tr>
<td>Improving water quality in all lakes and rivers even those not frequently used by...</td>
<td>52</td>
</tr>
<tr>
<td>Improving water quality in lakes and rivers used primarily for recreation</td>
<td>47</td>
</tr>
</tbody>
</table>
Net Benefits Under Future Scenarios

The Stated Preference Valuation Method Presents Choices to People.

- Scenario #1: Maintain Water Quality
- Scenario #2: Improve Water Quality
Bid Response

All Respondents

<table>
<thead>
<tr>
<th>Bid</th>
<th>Maintain (% Yes)</th>
<th>Improve (% Yes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2</td>
<td>76%</td>
<td>75%</td>
</tr>
<tr>
<td>$5</td>
<td>77%</td>
<td>68%</td>
</tr>
<tr>
<td>$7</td>
<td>42%</td>
<td>62%</td>
</tr>
<tr>
<td>$10</td>
<td>44%</td>
<td>54%</td>
</tr>
<tr>
<td>$12</td>
<td>63%</td>
<td>50%</td>
</tr>
<tr>
<td>$15</td>
<td>41%</td>
<td>47%</td>
</tr>
<tr>
<td>$20</td>
<td>40%</td>
<td>62%</td>
</tr>
<tr>
<td>$30</td>
<td>31%</td>
<td>51%</td>
</tr>
<tr>
<td>$40</td>
<td>29%</td>
<td>32%</td>
</tr>
<tr>
<td>$50</td>
<td>26%</td>
<td>31%</td>
</tr>
</tbody>
</table>

Nonusers

![Graph showing bid response for nonusers]

Users

![Graph showing bid response for users]
Annual Total Economic Value (lower bound)

<table>
<thead>
<tr>
<th></th>
<th>Maintain WQ</th>
<th></th>
<th>Improve WQ</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WTP/HH</td>
<td>Aggregate</td>
<td>WTP/HH</td>
<td>Aggregate</td>
</tr>
<tr>
<td>Users (73%)</td>
<td>$38</td>
<td>$24 million</td>
<td>$97</td>
<td>$63 million</td>
</tr>
<tr>
<td>Nonusers (27%)</td>
<td>$26</td>
<td>$6 million</td>
<td>$26</td>
<td>$6 million</td>
</tr>
<tr>
<td>Total</td>
<td>$30 million</td>
<td>$30 million</td>
<td>$69 million</td>
<td>$69 million</td>
</tr>
<tr>
<td>Net Present Value (2.7%)</td>
<td>$463 million</td>
<td></td>
<td>$1,051 million</td>
<td></td>
</tr>
</tbody>
</table>
Conclusions

- People’s recreation behavior is consistent with their statements.
- Recreation benefits are a fraction of total economic value, consistent with people’s statements that what they value is protecting water quality for future generations.
- Households are willing to pay for improving and protecting water quality – So we have some dollars to work with.
- Use $ wisely and will have public support.
 - Spend the $ where can deliver results
 - Dollars will go farther if prioritize by maximizing net benefits.
Additional Information

Nutrient Reduction Program
Jeff Ostermiller
Jostermiller@utah.gov
(801) 536-4370

Nutrient Benefits Study
Nicholas von Stackelberg, P.E.
nvononstackelberg@utah.gov
(801) 536-4374

Mary Jo Kealy
mkealy@ch2m.com
302-478-1521

http://nutrients.utah.gov