Future riverine nitrogen export to US coastal areas: Prospects for improving water quality amid population growth

Michelle McCrackin¹,², John Harrison², Jana Compton³

National Research Council¹, Washington State University², USEPA³

December 12, 2012
Coastal ecosystem services

- Protection from flooding and storm events
- Maintenance of fisheries
- Nutrient cycling
- Water purification
- Recreation
Excess N in coastal ecosystems

• Reduced biodiversity
• Degraded water quality
• Harmful algal blooms
• Hypoxia
Question

How will population growth affect future N loads to US coastal areas?
Future coastal TN loads

- Nutrient Export from WaterSheds (NEWS) model
- 2030 scenarios
 - Millennium Ecosystem Assessment
 - Two additional scenarios
 - “Business as usual”
 - “Ambitious”

Seitzinger 2010
Agricultural sources
Atmospheric deposition
Background N-fixation

Land-to-water delivery
Storage/removal on land

Sewage

In-stream retention

N delivered to basin mouth

NEWS model: N transport by rivers

Mayorga 2010
MEA scenario storylines

<table>
<thead>
<tr>
<th>Reactive environmental management</th>
<th>Globalization</th>
<th>Proactive environmental management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global Orchestration</td>
<td>Technogarden</td>
<td>Adapting Mosaic</td>
</tr>
<tr>
<td>Order from Strength</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Regionalization

- Millennium Ecosystem Assessment 2005; Seitzinger 2010
Key scenario drivers

<table>
<thead>
<tr>
<th></th>
<th>2000</th>
<th>2030 AM</th>
<th>2030 GO</th>
<th>2030 BAU</th>
<th>2030 AMB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population (million people)</td>
<td>297</td>
<td>370</td>
<td>375</td>
<td>375</td>
<td>375</td>
</tr>
<tr>
<td>Fertilizer recovery efficiency (%)</td>
<td>48</td>
<td>63</td>
<td>57</td>
<td>48</td>
<td>70</td>
</tr>
<tr>
<td>N in human excretion (kg N/person)</td>
<td>6.4</td>
<td>7.3</td>
<td>8.0</td>
<td>8.0</td>
<td>6.4</td>
</tr>
<tr>
<td>N removed by WWTP (%)</td>
<td>61</td>
<td>66</td>
<td>70</td>
<td>61</td>
<td>80</td>
</tr>
</tbody>
</table>

2000, AM, GO: Seitzinger 2010
BAU, AMB: Agriculture: Smil 1999; Sewage: Van Drecht 2009
Scenario outcomes

Particulate
Natural
Sewage
Atmospheric deposition
Agriculture
Scenario assumptions in context

- Scenarios reflect interaction of
 - Socio-economic factors
 - Nutrient management practices
- Compared assumptions to
 - US agency publications
 - Scientific literature
Population growth

<table>
<thead>
<tr>
<th>Population (million people)</th>
<th>2000</th>
<th>2030 AM</th>
<th>2030 GO</th>
<th>2030 BAU</th>
<th>2030 AMB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>297</td>
<td>370</td>
<td>375</td>
<td>375</td>
<td>375</td>
</tr>
</tbody>
</table>

- Population growth drives increases in
 - Crop production
 - Fossil fuel combustion
 - Sewage
Population growth drives increases in
- Crop production
- Fossil fuel combustion
- Sewage

US Census Bureau
- 2012: 312 million
- 2030 projection: 373 million people
Fertilizer recovery efficiency

<table>
<thead>
<tr>
<th>Year</th>
<th>2000</th>
<th>2030 AM</th>
<th>2030 GO</th>
<th>2030 BAU</th>
<th>2030 AMB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fertilizer recovery efficiency (%)</td>
<td>48</td>
<td>63</td>
<td>57</td>
<td>48</td>
<td>70</td>
</tr>
</tbody>
</table>

Since 2000, additional 28 m acres under some form of nutrient management

MARB Hypoxia Task Force 2011
Fertilizer recovery efficiency

<table>
<thead>
<tr>
<th></th>
<th>2000</th>
<th>2030 AM</th>
<th>2030 GO</th>
<th>2030 BAU</th>
<th>2030 AMB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fertilizer recovery</td>
<td>48</td>
<td>63</td>
<td>57</td>
<td>48</td>
<td>70</td>
</tr>
<tr>
<td>efficiency (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- ~35% of US cropland meet BMPs for rate, timing, and method of fertilizer application
- Typical fertilizer recovery efficiencies ~50%
- Future improvements appear optimistic

Cassman and Doberman 2002; Ribaudo et al. 2011
Dietary preferences

<table>
<thead>
<tr>
<th>N in human excretion (kg N/person)</th>
<th>2000</th>
<th>2030</th>
<th>2030</th>
<th>2030</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AM</td>
<td>GO</td>
<td>BAU</td>
<td>AMB</td>
</tr>
<tr>
<td>6.4</td>
<td>7.3</td>
<td>8.0</td>
<td>8.0</td>
<td>6.4</td>
<td></td>
</tr>
</tbody>
</table>

- Strong, positive relationship between wealth and food consumption

Van Drecht 2009; Kearney 2010
Dietary preferences

<table>
<thead>
<tr>
<th></th>
<th>2000</th>
<th>2030 AM</th>
<th>2030 GO</th>
<th>2030 BAU</th>
<th>2030 AMB</th>
</tr>
</thead>
<tbody>
<tr>
<td>N in human excretion (kg N/person)</td>
<td>6.4</td>
<td>7.3</td>
<td>8.0</td>
<td>8.0</td>
<td>6.4</td>
</tr>
</tbody>
</table>

- **2000–2010 trends**
 - Meat consumption down 5%
 - Total food consumption flat

- **Effects of economic conditions or changes in dietary preferences?**
Sewage treatment effectiveness

<table>
<thead>
<tr>
<th>N removed by WWTP (%)</th>
<th>2000</th>
<th>2030 AM</th>
<th>2030 GO</th>
<th>2030 BAU</th>
<th>2030 AMB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>61</td>
<td>66</td>
<td>70</td>
<td>61</td>
<td>80</td>
</tr>
</tbody>
</table>

- States planning for 66% N-removal efficiency

Time lags

• NEWS model structure assumes N is in steady-state

• Evidence of N accumulation in managed landscapes
 – 30 y time lag between N input and export for River Thames
 – >20 y of N management in Europe, but no consistent reductions in coastal export

Howden 2011; Grizzetti 2012
Conclusions

• Substantial changes in nutrient management needed
 - Technologies and BPM’s exist today to reduce coastal N loads
 - Reducing agricultural N will have the greatest coastal benefit

• Policies must take decadalal perspectives

• Degradation of coastal ecosystems and services likely to continue
Questions
NO\textsubscript{x} emissions have declined

Figure 8: NO\textsubscript{x} Emission Trends for All Acid Rain Program Units, 1990-2009

Source: EPA, 2010