InVEST Hydropower Production

Adrian L. Vogl
Stanford University
avogl@stanford.edu
Questions InVEST can answer

- How much water is available?
- Where does the water used for hydropower production come from?
- How much energy does it produce?
- How much is it worth?
Water Yield

- Water yield
- Inflow
 - Precipitation
 - Rain
 - Snow
 - Fog
- Root depth
- Water Availability
- Transpiration
- Evaporation
- Leaf type
- Plant type
- Seasonality
Water Yield

- Precipitation
 - Rain
 - Snow
 - Fog

- Transpiration

- Evaporation

- Inflow
 - Root depth
 - Water Availability

- Water yield

- Leaf type
- Plant type
- Seasonality
Model Architecture

- Land Use
- Soils
- Climate

Water Yield Model

Water yield – water consumed

= water available for hydropower

- Evapo-transpiration
- Water Yield
- Consumptive Use

- Water Supply

- Energy
- Energy Value

- Price
- Turbine Efficiency
- Dam Height

Hydropower and Valuation Model

- Water Scarcity Model
Model Inputs

Climate
Precipitation, Potential Evapotranspiration, Zhang

Soils
Soil depth, Plant Available Water Content

Watersheds
Main and sub-watersheds for point of interest

Land Use/Land Cover
Root depth, Evapotranspiration coefficient

Water demand

Economic
Hydropower plant data, price of energy
Obtaining Input Data

- Local: Field work, rain gauges, hydropower plant data
- Regional: National data
- Similar ecotypes: climate, elevation, vegetation
- Global: Climactic Research Unit precipitation, FAO soils, GLCF landcover
- Root depth/etk: Literature search
Model Outputs

- **Actual Evapotranspiration**
 mm/year

- **Water yield**
 mm/year

- **Water supply**
 m3/year
 Used in valuation

- **Energy/value for hydropower**
 Kw/currency over timespan
Limitations

- Neglects extremes and seasonal variation of water yield
- Neglects surface-deep groundwater interactions
- Assumes hydropower production and pricing remain constant
Outlook

- Groundwater recharge index
- Automate calibration
- Monthly time step
- Regionalize the Zhang constant
- Tier 2 water yield model
Application

Predicted water yield change 1990-2060, HADCM climate change model
Predicted per capita water yield change 1990-2060, HADCM climate change model
Questions?
Nutrient Retention Model

Based on runoff and export coefficients*

- Nitrogen and phosphorus
- Includes climate and geomorphology
- Potential export from a parcel/pixel

\[
\text{Precipitation} - \text{Evapo-transpiration} = \text{Runoff (water yield)}
\]

<table>
<thead>
<tr>
<th>Landuse</th>
<th>Nitrogen Export Values (kg/ha/yr)</th>
<th>Phosphorus Export values (kg/ha/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forest</td>
<td>1.8</td>
<td>0.011</td>
</tr>
<tr>
<td>Corn</td>
<td>11.1</td>
<td>2</td>
</tr>
<tr>
<td>Cotton</td>
<td>10</td>
<td>4.3</td>
</tr>
<tr>
<td>Soybeans</td>
<td>12.5</td>
<td>4.6</td>
</tr>
<tr>
<td>Small Grain</td>
<td>5.3</td>
<td>1.5</td>
</tr>
<tr>
<td>Pasture</td>
<td>3.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Feedlot or Dairy</td>
<td>2900</td>
<td>220</td>
</tr>
<tr>
<td>Idle</td>
<td>3.4</td>
<td>0.1</td>
</tr>
<tr>
<td>Residential</td>
<td>7.5</td>
<td>1.2</td>
</tr>
<tr>
<td>Business</td>
<td>13.8</td>
<td>3</td>
</tr>
<tr>
<td>Industrial</td>
<td>4.4</td>
<td>3.8</td>
</tr>
</tbody>
</table>
Sediment Retention Model

Based on the Universal Soil Loss Equation (USLE)

\[
\text{USLE} = R \times K \times LS \times C \times P
\]

= potential export
Hydraulic Connectivity

Flow direction

load (N/P/sed)

to reservoir

export

Stream

Retention

Forest

Wheat

Corn
Valuation

- *Net Present Value* of retention
- Based on *avoided treatment costs*
Inputs - Nutrient

Climate
Precipitation, Potential evapotranspiration, Zhang

Topography
Digital elevation model, Threshold flow acc

Soils
Soil depth, Available water content

Watersheds
Catchments flowing into points of interest

Land use/Land cover
Export coefficients, retention capacity, root depth, etc

Economic
Critical loading, treatment cost, time, discount rate
Inputs - Sediment

Land use/Land cover
Vegetation retention, land practice and management

Topography
Digital elevation model, slope threshold, threshold flow acc

Erosivity
Based on intensity and kinetic energy of rainfall

Erodibility
Soil detachment and transport potential due to rainfall

Streams
Used to determine where sediment flows to

Watershed Areas
Catchments flowing into reservoirs

Reservoir Features
Dead volume, lifetime of reservoir, allowed load

Economic
Reservoir dredging costs Or water quality filtering costs
Outputs - Nutrient

Nutrient Exported
Kg/year

Nutrient Retained
Kg/year
Used in valuation

Value of Nutrient Removal for Water Quality
Currency over time period
Outputs - Sediment

Potential Soil loss
Calculated from USLE
Tons/year

Sediment Retained
Tons/year
Used in valuation

Sediment Exported
Tons/year

Value of Sediment Removal for Water Quality/Dredging
Currency over time period

Total export to reservoir
Limitations - Nutrient

- All bio-physio-chemical processes are lumped in one export coefficient
- Annual basis, no seasonality
- No in-stream processes or point sources
- Assess one pollutant per run
- No saturation in uptake
Limitations - Sediment

- Predicts erosion from sheet wash alone
- Sediment gets to outlet within a year
- No limit to retention
- Neglects the role of topography, soil, climate in the retention processes
- Accuracy limited in mountainous areas
Questions?