Incorporating Ecosystem Services into Coastal and Watershed Management

Susan Yee
U.S. Environmental Protection Agency
Gulf Ecology Division

William Fisher
Gulf Ecology Division

Patricia Bradley
Atlantic Ecology Division
ESRP Coral Reef Project

Objective: Provide information and tools that support evaluation of trade-offs among reef ecosystem services under alternative decisions

U.S. Virgin Islands

Puerto Rico
Virgin Islands Case Study

Can expanded Clean Water Act water quality standards (biological criteria) protect fisheries, tourism/recreation and shoreline protection values of USVI coral reefs?

U.S. Virgin Islands Department of Planning & Natural Resources
EPA Region 2
Biocriteria - thresholds established to protect the biological condition of aquatic life inhabiting waters of a given designated use. [Clean Water Act]
Biocriteria - thresholds established to protect the biological condition of aquatic life inhabiting waters of a given designated use. [Clean Water Act]
Biocriteria - thresholds established to protect the biological condition of aquatic life inhabiting waters of a given designated use. [Clean Water Act]
Biocriteria - thresholds established to protect the biological condition of aquatic life inhabiting waters of a given designated use. [Clean Water Act]
Biocriteria - thresholds established to protect the biological condition of aquatic life inhabiting waters of a given designated use. [Clean Water Act]
Biocriteria - thresholds established to protect the biological condition of aquatic life inhabiting waters of a given designated use. [Clean Water Act]
Puerto Rico Case Study

Will implementation of the Guánica Bay Watershed Management Plan improve fisheries, tourism/recreation, and shoreline protection value of coral reefs in Southwestern Puerto Rico?

Puerto Rico Department of Natural & Environmental Resources
EPA Region 2
Nonpoint Pollutant Discharge
• Shade-grown coffee
• Cover crops
• Hydroseeding
• Dredge reservoirs
• Remove relic irrigation
• Lagoon restoration
Research Approach

Decisions → Stressors → Reef Attributes → Ecosystem Services

Cost/Benefit Comparisons
Research Approach

1. Understand priorities of decision-makers

- Decisions
- Stressors
- Reef Attributes
- Ecosystem Services

Cost/Benefit Comparisons
Research Approach

1. Understand priorities of decision-makers
2. Link stressors to reef attributes

Decisions → Stressors → Reef Attributes → Ecosystem Services

Cost/Benefit Comparisons
Research Approach

1. Understand priorities of decision-makers
2. Link stressors to reef attributes
3. Connect reef attributes to ES

Decisions → Stressors → Reef Attributes → Ecosystem Services

Cost/Benefit Comparisons
Research Approach

1. Understand priorities of decision-makers
2. Link stressors to reef attributes
3. Connect reef attributes to ES
4. Develop models to evaluate alternative scenarios
Research Approach

1. Understand priorities of decision-makers
2. Link stressors to reef attributes
3. Connect reef attributes to Ecosystem Services
4. Develop models to evaluate alternative scenarios
5. Build decision-support tools
DPSIR Framework

Driving Forces
Socioeconomic sectors and cultural factors that drive human activities (causes)

Pressure
Human activities that place stress on the environment (pollutants)

Response
Response of society to the environmental situation (policies, decisions)

State
Condition of the environment (composition, distribution, quality)

Impact
Effects of environmental degradation (changes in attributes, services)

Yee et al. in press
1. Understanding Decisions

2007: US Virgin Islands
2009: Florida Keys National Marine Sanctuary
2010: Puerto Rico

- Identify priority issues
- Elaborate potential management options
Demonstrate a tool and let them apply it

- DPSIR Framework
 - Encourages whole-systems thinking
 - Consider purpose/consequences of proposed actions
Demonstrate a tool and let them apply it

- Social Network Analysis
 - Understand the critical players & relationships
Demonstrate a tool and let them apply it

- Decision Analysis
 - Understand the decision-making process
 - Identify alternative management strategies

Rehr et al. In review
Benefits of the process

• Participants
 • Opportunity to learn about decision support tools

• Organizers
 • A task to get the conversation going
 • Elicit information on their priorities/concerns
After the workshop...

• Expand objectives of original plan to reflect workshop

Management Actions

- Hydroseeding
- Cover Crops
- Shade-grown coffee
- Lagoon restoration
- Dredge reservoirs
- Reservoir releases
- Rainwater collection
- Riparian plantings
- Remove relic irrigation structures
- Pet waste cleanup
- Wetland treatment of sewage effluent

Rationale

- Reduce physical/chemical stressors in water
- Maximize ecological integrity
 - Coral reefs
- Reduce biological stressors in water

Carriger et al. in prep.
After the workshop...

- Expand objectives of original plan to reflect workshop
After the workshop...

- Expand objectives of original plan to reflect workshop

<table>
<thead>
<tr>
<th>Management Actions</th>
<th>Rationale</th>
<th>Objective</th>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydroseeding</td>
<td></td>
<td></td>
<td>Agriculture economy</td>
</tr>
<tr>
<td>Cover Crops</td>
<td></td>
<td></td>
<td>Drinking water supply</td>
</tr>
<tr>
<td>Shade-grown coffee</td>
<td></td>
<td></td>
<td>Tourism economy</td>
</tr>
<tr>
<td>Lagoon restoration</td>
<td></td>
<td></td>
<td>Fishing economy</td>
</tr>
<tr>
<td>Dredge reservoirs</td>
<td>Reduce physical/chemical stressors in water</td>
<td>Maximize ecological integrity</td>
<td>Shoreline protection</td>
</tr>
<tr>
<td>Reservoir releases</td>
<td></td>
<td>Streams & rivers</td>
<td></td>
</tr>
<tr>
<td>Rainwater collection</td>
<td></td>
<td>Reservoirs</td>
<td></td>
</tr>
<tr>
<td>Riparian plantings</td>
<td></td>
<td>Estuaries</td>
<td></td>
</tr>
<tr>
<td>Remove relic irrigation structures</td>
<td></td>
<td>Wetlands</td>
<td></td>
</tr>
<tr>
<td>Pet waste cleanup</td>
<td></td>
<td>Coral reefs</td>
<td></td>
</tr>
<tr>
<td>Wetland treatment of sewage effluent</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Reduce biological stressors in water
After the workshop...

- Organize information in an objectives hierarchy
 - What are the fundamental objectives & how to measure?
After the workshop…

- Organize decision options in Means-Ends Network
 - Are the options adequate or are new options needed?

Objectives

- Maximize ecological integrity
- Maximize economic benefits
- Enhance social well-being
- Minimize threats to human health
- Meet political and legislative requirements

Means

- Enforce sediment erosion regulations
- Maximize planting of cleared home sites & dirt roadways
- Minimize pet waste
- Treat sewage effluent
- Restore lagoon marshes
- Dredge reservoirs/ sustain releases
- Treat stormwater outflows
- Encourage hydroseeding
- Enhance riparian planting/ cover crops
- Create incentives for shade grown coffee
- Remove relic irrigation structures
- Establish rainwater collection systems

Reduce physical/chemical/bacterial stressors from municipal loadings

Conserve freshwater supplies
2. Link Stressors to Reef Attributes

- Dose-response relationships
- Human-disturbance gradients
- Linking landscape activity to coral condition
Dose-response Relationships

2-week sediment exposure period

3-D growth in mm²

![Graph showing 3-D growth in mm² over different sediment exposure periods (Control, 1/2 hour, 5 hour, 24 hour).]
Human-disturbance Gradient

St. Thomas, USVI

1 km from cruise ship lanes

0.1 km from cruise ship lanes
Linking Landscape Activity to Reefs

Landscape Development Intensity Index

\[y = -1469.6x + 5502.4 \]

Oliver et al. in review
Link between human activity & reef condition but….

What are the consequences on provisioning of ecosystem services?
3. Connecting Reef Attributes to Ecosystem Services

Literature Review

• What services have been identified?
• How were services measured?
• How can reef attributes be translated into services?
• What indicators estimate delivery of services?

Principe et al. EPA Report 2010
ECOSYSTEM SERVICES RESEARCH PROGRAM

Tourism & Recreation

Fishing

Shoreline Protection

Natural Products
Tourism & Recreation

Shoreline Protection

Ecosystem Integrity

Natural Products

Fishing
Tourism & Recreation

- Survey and valuation methodology

<table>
<thead>
<tr>
<th>Biotic Features</th>
<th>Natural Features</th>
<th>Abiotic Features</th>
<th>Social Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Species richness (coral, fish, sponges, etc.)</td>
<td>Warm ocean temperatures</td>
<td>Water clarity</td>
<td>Perceptions of crowding</td>
</tr>
<tr>
<td>Variety of species characteristics (coral, fish, sponges, etc.)</td>
<td></td>
<td></td>
<td>• # of divers/snorkelers</td>
</tr>
<tr>
<td>• colorful</td>
<td></td>
<td></td>
<td>• # of proximal boats</td>
</tr>
<tr>
<td>• large</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• rare</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charismatic megafauna species diversity (birds, marine mammals, turtles)</td>
<td>Calm waters</td>
<td></td>
<td>Lack of pollution</td>
</tr>
<tr>
<td>Coral health</td>
<td>White coralline sands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-dimensional reef structure</td>
<td>Proximity to deep ocean & waves</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coral/macroalgae ratio</td>
<td>Connectivity with the adjacent tropical ecosystems</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2-1. *Features relevant to the perceived value of coral reefs*
Fishing

- Essential fish habitat
- Fisheries models

McClanahan 1994
Shoreline Protection

- Hydrodynamic models
- Anecdotal evidence

Modified from Monismith 2007

Modified from Kunkel et al. 2006
Natural Products

- Reviews of existing products derived from reefs

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Chemical Class</th>
<th>Source</th>
<th>Latin Name</th>
<th>Photo of Source</th>
<th>Location</th>
<th>Specific Application</th>
<th>Status</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-β-D-glucosylxylotriose</td>
<td>C-molecules (derived from P. hexadactyla)</td>
<td>sponge</td>
<td>Cryptophora notoidea</td>
<td></td>
<td>Caribbean</td>
<td>antiviral & anticancer</td>
<td>clinical use</td>
<td></td>
</tr>
<tr>
<td>adenine derivative (Ara-A, Vidarabine®)</td>
<td>C-molecules (derived from gorgonian)</td>
<td>gorgonian</td>
<td>Entacmaea quadricornis</td>
<td></td>
<td>Mediterranean</td>
<td>anticancer</td>
<td>clinical use</td>
<td></td>
</tr>
<tr>
<td>agelaspin derivative (KR27-7000)</td>
<td>alpha-galactosylceramide (first known extraction from natural source)</td>
<td>sponge</td>
<td>Agelas vonnoda</td>
<td></td>
<td>Mediterranean</td>
<td>antineoplastic; stimulates lymphocytic proliferation under certain conditions;</td>
<td>Phase I trial showed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>appears to stimulate the production of natural killer T (NK1) cells in the body</td>
<td>effects on patients</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>having high levels of</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NK1 cells.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Phase II trials</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>underway</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>for various cancers</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PharmaMar</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Phase I trials</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>synthetic derivative</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>licensed to Lilly by</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Univ. of Hawaii</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>withdrawn in 2002</td>
<td></td>
</tr>
<tr>
<td>Ecosystem Services</td>
<td>Biodiversity</td>
<td>Fish Diversity & Abundance</td>
<td>Coral Diversity & Abundance</td>
<td>Coral health</td>
<td>Reef Rugosity</td>
<td>Reef Depth & Slope</td>
<td>Reef continuity</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>--------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>--------------</td>
<td>--------------</td>
<td>-------------------</td>
<td>-----------------</td>
<td></td>
</tr>
<tr>
<td>Recreational fishing opportunity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diving/snorkeling opportunity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Underwater photography opportunity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surfing opportunity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reduction in rates of shoreline erosion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reduction in degree of coastal flooding</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harvestable stock for seafood</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aquarium products</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material for curios and jewelry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marketable natural product or template</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>resulting in a product</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4. Developing models

Dynamic models
4. Developing models

Poster #19
Modeling Ecosystem Services with Bayesian Networks
Modeling Sustainable Delivery of Reef Ecosystem Services

- Many good existing models
 - Lack general applicability to range of management scenarios
 - Lack portability/scalability
 - Lack connection to ecosystem services
Connect land-based stressors to offshore water quality.
5. Decision Support Tools

Dynamic models

Bayesian Network
Reef ES & Decision Support Database

- Management options
- Legislation
- Clients and partners
- Scientific literature

- Jurisdiction- or topic-specific
Tutorial on Systems Thinking using DPSIR

- Web-based Tutorial
- Generic DPSIR words list
- Generic DPSIR conceptual models
DPSIR Framework

• Eliciting information from clients
• Identifying key stressors & services
• Synthesizing objectives & means to achieve them
• Building whole-systems models
• Organizing the state of knowledge
• Identifying knowledge and research gaps
• Systems-thinking linking human system to ecosystem
Coral Project Team

EPA Gulf Ecology Division
Susan Yee
Ashley Weatherall
Deborah Vivian
Sherry Vickery
Debbie Santavy
Bob Quarles
Leah Oliver
Cheryl McGill
John Lehrter
Eric Johnson
Becky Hemmer
Peggy Harris
Jack Fournie
Bill Fisher
Lee Courtney
John Carriger
Jed Campbell
Mace Barron

Other EPA
Pat Bradley
Peter Principe
Dan Campbell
Paula Allen
Peter Shuba
Carolyn Fonyo
Roel Boumans
Ann Vega
Marilyn Tenbrink
Our Partners

- EPA
- National Oceanic and Atmospheric Administration (NOAA)
- USDA NRCS
- USGS Caribbean Field Station
- Caribbean Coral Reef Institute (CCRI), University of Puerto Rico
- National Coral Reef Institute (NCRI), Nova Southeastern
- The Nature Conservancy (TNC)
- Center for Watershed Protection (CWP)
- Carnegie-Mellon University
- University of Miami, Rosentiel School of Marine Sciences (RSMAS)
- University of the Virgin Islands
- National Fish and Wildlife Foundation (NFWF)
- USVI Department of Planning and Natural Resources (DPNR)
- Puerto Rico Departamento de Recursos y Ambientales (DNRA)
- Florida Department of Environmental Protection (DEP)
Demonstrate a tool and let them apply it

- Decision Analysis
 - *Understand the decision-making process*
 - *Identify alternative management strategies*
Agriculture Policies & Guidance

EPA, as a regulatory agency, has primary responsibility for enforcing the environmental statutes. Sometimes, however, that authority needs to be further issues policy or guidance to encourage compliance with environmental requirements.

- General Enforcement Policies
- Statute-Specific Policy Categories

Controls practices of

Agriculture

Emissions regulations

Improved technology

Ecosystem Services Research Program

Traveling regulations

Energy policies

Tourism regulations

Marine Protected Areas

Pharmaceuticals

Waste disposal

Tourism & Recreation

Culture

Fishing regulations

Boating regulations

Scientific monitoring

Restoration activities

Dredging

Vessel groundings

Trampling

Harvesting

By-catch

Ecosystems

Reduces flooding & benefits

Contaminants

Nutrients

Sediment

Pathogens

Temperature

CO2

Sea level

Hurricanes

Shoreline protection

Sand production

Fish & Invertebrate Habitat

Fishing stock

Biological diversity

Influences distribution of

Influences survival

Influences

Compete for space

Grazes & maintains

Provides

Essential for

Available as

Contributes to

Aesthetic value for

Research potential for

After the workshop…

• Remain engaged
 • Web-group for posting info
 • Newsletter of updates
 • Webinars
 • Vetting Objectives Hierarchy & Means-Ends Network
 • Follow-up workshop