CREDITS AS PERFORMANCE MEASURES

For Public Restoration & Regulation
Are environmental regulations solving today’s environmental challenges?
Are environmental regulations solving today’s environmental challenges?

What are we getting for our investment in the environment?
Are environmental regulations solving today’s environmental challenges?

What are we getting for our investment in the environment?

How can people invest to protect ecosystem services they rely on?
what’s the problem?
Compliance is the goal instead of restoration…

…so policy tools become the end rather than the means.
ENVIRONMENTAL ACCOUNTING

Credit Users

Credit Producers

Administrators

Regulators

General Public/
Tax Payer
REGULATION
Environmental Accounting Program Approach
REGULATION
Regulations lead to standoffs...
Regulators require greater detail…

instead of greater performance
TRADITIONAL FUNDING ALLOCATION
TRADITIONAL FUNDING ALLOCATION
TRADITIONAL FUNDING ALLOCATION
Public can’t value environmental investments...
Not enough funding available for restoration…
what’s the solution?
PERFORMANCE-BASED PERMITS
PERFORMANCE-BASED PERMITS
PERFORMANCE-BASED PERMITS
INVEST PUBLIC FUNDS
COMMUNITY INVESTMENT
COMMUNITY INVESTMENT
how do you create an environmental accounting system?
Situation Analysis & Scope
Decision [6 months]

Program Design
[12–18 months]

Program Launch & Tuning
[18 months]

Program Operations
[ongoing]
ACCOUNTING SYSTEM DESIGN

CONSIDERATIONS & COST DRIVERS

- Physical System
- Stakeholder Engagement
- Policies & Programs
- Economics
- Operations and Roles
ACCOUNTING SYSTEM DESIGN

CONSIDERATIONS & COST DRIVERS

- Physical System
- Stakeholder Engagement
- Policies & Programs
- Economics
- Operations and Roles

Technical complexity
Accuracy
ACCOUNTING SYSTEM DESIGN

CONSIDERATIONS & COST DRIVERS

Physical System
- Technical complexity

Stakeholder Engagement
- Accuracy

Policies & Programs
- Diversity of users

Economics

Operations and Roles
ACCOUNTING SYSTEM DESIGN

CONSIDERATIONS & COST DRIVERS

Physical System
- Technical complexity
- Accuracy
- Diversity of users

Stakeholder Engagement
- Stakeholder resistance

Policies & Programs
- Regulatory/voluntary

Economics
- Magnitude of $
ACCOUNTING SYSTEM DESIGN

CONSIDERATIONS & COST DRIVERS

Physical System
- Technical complexity
- Accuracy
- Diversity of users
- Stakeholder resistance
- Regulatory/voluntary
- Magnitude of $

Stakeholder Engagement
- Availability of tech & admin support

Policies & Programs
- Availability of tech & admin support

Economics
- Availability of tech & admin support

Operations and Roles
- Availability of tech & admin support
- Change/Reduce Abrasives
- Road Abrasive Application
- Impervious Surface

Stormwater → Sediment

Lake Clarity
Trophic Status
Sweep Roads

Restore Floodplains

Change/Reduce Abrasives

Road Abrasive Application

Reduce Impervious Surface

Impervious Surface

Increase Infiltration

Filtrate

Stormwater

Sediment

Lake Clarity

Trophic Status
- Sweep Roads
- Restore Floodplains
- Change/Reduce Abrasives
- Reduce Impervious Surface
- Impervious Surface
- Road Abrasive Application

Stormwater

Sediment

- Increase Infiltration
- Filtrate

Lake Clarity
Trophic Status

Environmental Incentives

$ $ $ $ $
Environmental accounting enables a self-organizing system to emerge.
Environmental accounting enables a self-organizing system to emerge that...

“Motivates effective action to improve the environment.”
– Lake Clarity Crediting Program

“Provides the highest quality restoration where it will have the greatest ecological impact.”
– Willamette Partnership

“Increases the pace and reduces the cost of improving water quality to support all water-related uses, including the recovery of native fish.”
– Klamath Tracking & Accounting Program