The 2014 Educational Program Committee is pleased to share conference educational materials with you under the condition that they are used without alteration for educational and non-commercial use only. All materials are protected by copyright law. The authors kindly request their work is properly cited, including the date of publication.

For more information on Small Farms, visit our website at: http://smallfarms.ifas.ufl.edu/ or contact your local County Extension Agent.

For inquiries about this topic, please contact: Danielle Treadwell, Educational Program Chair.
Phone: (352) 273-4775
Email: ddtreadw@ufl.edu

Suggested Citation: Author Full Name. Title of Presentation or Handout. 2014 University of Florida-IFAS and Florida Agricultural and Mechanical University-CAFS Florida Small Farms and Alternative Enterprises Conference. August 1-2, Kissimmee, FL.
Plant Nutrition – Hydroponic crops

• Essential plant nutrients
• Uptake
• Transport
• Functions of nutrients
• Managing nutrients
How many?

• Are beginners?
• Have been growing for a few years?
• Are fairly experienced?
Small Farms & Alternative Enterprises

Planning & Management
Getting Started, Agriculture Loans and Grants, Community Supported Agriculture, Enterprise Budgets, Farm Safety, Farmers’ Markets, Marketing, Postharvest Handling, Regulations, Success Stories, Ag Measures and Conversions

Food Safety

Livestock & Forages
Livestock, Forages

Crops
Agronomy, Flowers & Foliage, Fruits & Nuts, Herbs, Hydroponics, Aquaculture

About this Website
Explore topics related to the production, marketing and economics of specific small farm enterprises. More...

Events Calendar
- Rabbits & Blueberry Pruning Workshop July 31, 2014
- 2014 Florida Small Farms and Alternative Enterprises Conference August 1-2, 2014
- Many More...
Florida Hydroponic Resources

- Florida Small Farms/Alternative Enterprises Web Site -
 http://smallfarms.ifas.ufl.edu

- Virtual Field Day - 20 Hydroponic Modules
 http://vfd.ifas.ufl.edu
Plant nutrition
Plants are like factories

- Supplies are delivered – sunlight, water, carbon dioxide, nutrients
- Need the right conditions in the factory for the workers
- Need the blueprints – DNA
- Need the supervisors – various signaling compounds
Factories

- Basic components are put together – amino acids, sugars, carbohydrates, nucleic acids
- Workers at the assembly lines – enzymes
- Bigger components are constructed – Cells, DNA
- Tissues and organs are formed
Factories

• Constant supply chain, manufacturing, transporting, refurbishing, breaking down, and re-manufacturing

• *Plant nutrients* are some of the critical supplies needed in the process – growers can help here
Things good growers know

- What nutrients are needed by plants
- What functions do they have in the plant
- A little plant nutrition (physiology)
- How to supply the nutrients
- Symptoms when they are missing
- How to diagnose problems
- How to correct problems
- How to formulate nutrient solutions
Essential Plant Nutrients

- C, H, O, P, K, N, S, Ca, Fe, Mg, B, Mn, Cu, Zn, Mo, Cl

- C. Hopkins CaFe, mighty good, owned by my cousins Moe and Clyde

- Last one, Cl, added in 1954
- Nickel, Ni, recently added as essential
- Beneficial elements: Co, Na, Si, V
Essential Plant Nutrients

- C, H, O, P, K, N, S, Ca, Fe, Mg, B, Mn, Cu, Zn, Mo, Cl, Ni

- Macro and micro nutrients
- Sources: air, water, soil, fertilizers
<table>
<thead>
<tr>
<th>Element</th>
<th>Abbreviation</th>
<th>μmol/g dry wt</th>
<th>mg/kg (ppm)</th>
<th>%</th>
<th>Relative number of atoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molybdenum</td>
<td>Mo</td>
<td>0.001</td>
<td>0.1</td>
<td>---</td>
<td>1</td>
</tr>
<tr>
<td>Copper</td>
<td>Cu</td>
<td>0.10</td>
<td>6.0</td>
<td>---</td>
<td>100</td>
</tr>
<tr>
<td>Zinc</td>
<td>Zn</td>
<td>0.30</td>
<td>20.0</td>
<td>---</td>
<td>300</td>
</tr>
<tr>
<td>Manganese</td>
<td>Mn</td>
<td>1.0</td>
<td>50.0</td>
<td>---</td>
<td>1,000</td>
</tr>
<tr>
<td>Iron</td>
<td>Fe</td>
<td>2.0</td>
<td>100.0</td>
<td>---</td>
<td>2,000</td>
</tr>
<tr>
<td>Boron</td>
<td>B</td>
<td>2.0</td>
<td>20.0</td>
<td>---</td>
<td>2,000</td>
</tr>
<tr>
<td>Chlorine</td>
<td>Cl</td>
<td>3.0</td>
<td>100.0</td>
<td>---</td>
<td>3,000</td>
</tr>
<tr>
<td>Sulfur</td>
<td>S</td>
<td>30</td>
<td>---</td>
<td>0.1</td>
<td>30,000</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>P</td>
<td>60</td>
<td>---</td>
<td>0.2</td>
<td>60,000</td>
</tr>
<tr>
<td>Magnesium</td>
<td>Mg</td>
<td>80</td>
<td>---</td>
<td>0.2</td>
<td>80,000</td>
</tr>
<tr>
<td>Calcium</td>
<td>Ca</td>
<td>125</td>
<td>---</td>
<td>0.5</td>
<td>125,000</td>
</tr>
<tr>
<td>Potassium</td>
<td>K</td>
<td>250</td>
<td>---</td>
<td>1.0</td>
<td>250,000</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>N</td>
<td>1000</td>
<td>---</td>
<td>1.5</td>
<td>1,000,000</td>
</tr>
</tbody>
</table>

Average Concentrations of Mineral Nutrients in Plant Shoot Dry Matter that are Sufficient for Adequate Growth

Micronutrients and macronutrients
Practical “take-home”

- Macro and micro are not descriptive of relative importance of a nutrient to the plant’s growth and reproduction.
- Your handout has descriptions of all the nutrients.
Nutrient Uptake

• How do plants take up nutrients from the environment?
• Why is this knowledge important for growers?
Nutrient Uptake in the Root

• Passive, nonmetabolic
 – mass flow, diffusion, or exchange
 – Free space, outside the membrane
 – Apoplast

• Active, metabolic (requires energy)
 – Absorption across a membrane
 – Involves ion carriers in the membrane
 – Symplast
Nutrient Uptake Pathways

- Epidermis
- Endodermis
- Phloem
- Xylem
- Casparian Strip
- Symplastic Pathway
- Apoplastic Pathway
- Cortical Cells
- Root Hairs
Nutrient uptake pathways

- Plasmodesmata
- Cell wall
- Casparian strip
- Black arrows depict movement of ions
- Apoplast
- Symplast
Nutrient uptake

- Requires healthy roots – we don’t often observe roots
- Uptake and transport requires energy from respiration
- Impacted by temperature, oxygen, light intensity
- Influenced by how well we provide growing conditions in the greenhouse
- Fertilizer program and other plant management programs are linked-can’t always make a plant better by throwing fertilizer at it
Nitrogen (N)

- Absorbed actively as nitrate (NO$_3^-$) or ammonium (NH$_3^+$)
- High levels of ammonium can be toxic
- Nitrate is reduced and incorporated into amino acids
- For most species the greatest growth is with a supply of both forms of N
Amino acids

Nonpolar:
- Glycine (Gly)
- Alanine (Ala)
- Valine (Val)
- Leucine (Leu)
- Isoleucine (Ile)
- Methionine (Met)
- Tryptophan (Trp)
- Phenylalanine (Phe)
- Proline (Pro)

Polar:
- Serine (Ser)
- Threonine (Thr)
- Cysteine (Cys)
- Tyrosine (Tyr)
- Asparagine (Asn)
- Glutamine (Gln)

Electrically Charged:
- Aspartic Acid (Asp)
- Glutamic Acid (Glu)
- Lysine (Lys)
- Arginine (Arg)
- Histidine (His)
N is in chlorophyll molecule - the green pigment of photosynthesis
Greek: Chloros (green) and phyllon (leaf)
What else is in the chlorophyll molecule?
Magnesium is in the chlorophyll molecule?
HEME
(Oxygen carrying portion of Hemoglobin)

CHLOROPHYLL

[Chemical structures of Heme and Chlorophyll]
N deficiency

• Yellowing of older leaves
• N is mobile in the plant, can be moved from the older tissues to satisfy development
• Typically 1.5 to 4% by dry weight
• More commonly we see excessive N than inadequate N
Practical take-home

- Nitrogen ions make up a large portion of the ions in the plant
- The “gas pedal”
- Not enough – low yields and small fruit size
- Too much – excessive growth, increases in certain diseases, fruit shape can be affected
Phosphorus (P)

- Taken up actively mostly as H_2PO_4
- Incorporated into nucleic acids, phospholipids, energy transfer compounds (ATP)
- Mobile nutrient, symptoms show first on older leaves
- 0.15 to 2.0%
The Nucleotides of DNA

Adenine Guanosine Thymine Cytosine

Purines Pyrimidines
Phosphorus deficiency
Calcium

- Passive absorption, mostly at the root tip area
- Casparian strip
- Cell walls, holding cells and tissues together
- Well water is high in Ca
- Fertilizer – calcium nitrate
Calcium localization, red dots

- Cell wall
- Plasma membrane
- Mitochondrion
- Middle lamella
- Cytoplasm
- Vacuole
Calcium

- 0.3 to 5.0% in plant tissue
- Not very mobile
- Where would you expect Ca deficiency symptoms first? (newest leaves or oldest?)
- Developing fruits of older fruits?
Calcium deficiency

Why does Ca deficiency mostly affect these young fruits?
Iron

- Absorbed actively
- Heme proteins such as cytochrome, involved in photosynthesis
- 50 to 150 ppm Fe
- Deficiency - what color would we see?
- Nonmobile – where do we first see the symptoms?
Toxicities

- Usually associated with the micronutrients
- Needed in small amounts
- Easy to over-apply
Nutrient toxicities

Cu toxicity

K deficiency
Satisfying the plant’s nutrient needs

- Irrigation water
- Media
- Fertilizer
Water testing - pH

• pH – most situations the pH will be high
• Presence of bicarbonates
• Problems with high pH and bicarbonate
 — Reduces growth
 — Precipitates of Ca and Mg – clog emitters
• Treat with acids – pH of 5.5 – 6.0
• Knowing about the water chemistry can help manage the fertilizer program
Water testing - EC

- Electrical conductivity
- How concentrated are the salts in the solution?
- An indirect, quick method for telling the relative nutrient concentration
- Does not say anything about any single nutrient or nutrients
- Expressed as dS/m or mmhos/cm
Water EC guidelines

• Good to excellent < 0.75 dS/m
• Permissible 0.76 to 2.00
• Problematic >2.00
E.C. and TDS?

• Need to be careful here
Water testing - EC

- High EC reduces growth, but can increase fruit TSS
- Crops vary in tolerance of high EC
- Problems using EC in organic fertilizer mixtures and under varying T
- Usefulness of EC measurements?
 - Evaluating leachate program
 - Evaluating the suitability of a water source
 - Still need nutrient analyses
Formulating the fertilizer solution

• Pre-mixed materials – weigh, mix with water, and apply – great for beginners and small growers
• Using a recipe and formulating yourself – Good for established growers
• Your handout
Nutrient solution formulation

• Handout – Nutrient Solution Formulation
• Elemental and oxide expressions
• Fertilizer trade $N - P_2O_5 - K_2O$
• Formulations use N-P-K

• Calculations and math??
• Florida Greenhouse Vegetable Production Handbook
 – http://edis.ifas.ufl.edu/cv265
P content in P_2O_5

- **Atomic Weights:**
 - Nitrogen (N) 14
 - Oxygen (O) 16
 - Phosphorus (P) 31
 - Potassium (K) 39

- **What is the P content in P_2O_5?**

 \[
 2 \times 31 = 62 \quad \text{(2 P atoms)} \\
 5 \times 16 = 80 \quad \text{(5 O atoms)} \\
 \text{Total} = 142
 \]

 \[
 \% \text{ P in } P_2O_5 = \frac{62}{142} \times 100 = 43.7 \% \quad \text{(Factor=0.44)}
 \]

 - So, for example, 8% P_2O_5 in a fertilizer is really 3.49% P!

 \[
 8 \% \text{ P2O5} \times \frac{62 \text{ lb P}}{142 \text{ lb } P_2O_5} = 3.49\% \text{ P}
 \]
Pre-mix formulation

- Amount of fertilizer in ppm to make 1 volume of stock solution =
 \[\text{Desired conc. in ppm} \times \text{dilution factor} \times \% \text{ of element in fertilizer} \times \text{"C"} \]
- Dilution factor is the larger number e.g. 200:1
- “C” is conversion constant depending on the units you want to measure
Conversion constants

- $C = 75$ for ounces per gallon of stock
- $C = 1200$ for lb per gallon
- $C = 10$ for grams per liter
Example

• We have a 1:98 injector and a 20-10-20 fertilizer. We want a delivered 150 ppm solution of N at each irrigation. How many ounces of fertilizer will we need to weigh out to fill a 20-gallon stock tank?
Example

• List out the information we need:
 – Desired concentration in ppm is 150
 – Injector ratio is 98:1; dilution factor is 98
 – Fertilizer analysis is 20-10-20 (20% N)
 – Conversion constant; we want to measure out in oz/gal, so we will use C=75.
Example

Desired conc. in ppm X dilution factor
% of element in fertilizer X “C”

150 ppm N X 98
20% N X 75

14,700
1,500

9.8 oz of 20-10-20 per gal
Or: 196 oz for 20 gals
Plant tissue testing

- Using the plant to provide information about its nutritional status
- Leaves are typically the tissue of choice
- Petioles
- Petiole sap
Growth (% of maximum)

Concentration of Nutrient in Tissue (dry basis)

- Critical Concentration
- Critical Nutrient Range (no symptoms)
- 10% Reduction in Growth
- Luxury Consumption
- Toxicity
- Visual Symptoms

Redrawn from Havlin et al., 1999
Plant part

- Mobile nutrients - most recently matured leaf
- Immobile nutrients - use upper leaves
- Example of each?
- Simple leaf, compound leaf
- Petiole
- petioliule
http://www.ncagr.gov/agronomi/Tissue/tom03.htm
Plant tissue testing

- Important to understand normal trends over the season
- What are the normal concentration ranges with time?
- Where are your plants within that sufficiency range?
- Record-keeping
Things good growers know

- What nutrients are needed by plants
- What functions do they have in the plant
- A little plant nutrition (physiology)
- How to supply the nutrients
- Symptoms when they are missing
- How to diagnose problems
- How to correct problems
- How to formulate nutrient solutions