Welcome to
Florida Small Farms and Alternative Enterprises
CONFERENCE
Weed Control in Organic Systems
The 2014 Educational Program Committee is pleased to share conference educational materials with you under the condition that they are used without alteration for educational and non-commercial use only. All materials are protected by copyright law. The authors kindly request their work is properly cited, including the date of publication.

For more information on Small Farms, visit our website at: http://smallfarms.ifas.ufl.edu/ or contact your local County Extension Agent.

For inquiries about this topic, please contact:
Danielle Treadwell, Educational Program Chair.
Phone: (352) 273-4775
Email: ddtreadw@ufl.edu

Suggested Citation: Author Full Name. Title of Presentation or Handout. 2014 University of Florida-IFAS and Florida Agricultural and Mechanical University-CAFS Florida Small Farms and Alternative Enterprises Conference. August 1-2, Kissimmee, FL.
What would you do without herbicides?

Weed Control in Organic Systems

Annette Wszelaki

Vegetable Extension Specialist
Choice of tool depends on:

- Weed composition
- Weed population
- Weather conditions
- Soil type
Characteristics of annuals:

• Adaptable to many environments
• Long seed life
• Variable seed dormancy habits
• Rapid growth
• High seed production
• Effective seed dispersal

Single plant = 100,000 seeds
Characteristics of perennials:

- Adaptable to many environments
- Long seed life
- Variable seed dormancy habits
- Regenerating parts
- Food storage
Tools for the box:

- Reduce weed pressure
- Diversify
- Cover cropping
- Feed the crop, not the weeds
- Selective cultivation
- Precise field prep
- Flaming
- Mulching
- Solarization/(ASD?)
- Alternative products
- Timing, timing, timing
- Combinations
- Experimentation
Reduce Weed Pressure

- Compost carefully
- No seed threshold
- Maintain field edges
- Wash equipment between fields
Diversify Crop Rotation

• Different crops support different weed compositions and populations
• Shallow rooted vs. deep rooted
• Crop families
• Reduce pest pressure
Cover Cropping

• Suppress weeds
 – Through competition, allelopathy, shading, etc.
 – Cereal rye, sorghum-sudangrass, other grasses
 – Rotate cover crops, so that weeds that compete well with that cover crop do not build up
 – Can be used as a killed mulch (mechanically or herbicide) in no-till systems to suppress weeds

(Miles and Brown, 2003)

Slide courtesy of David Butler, UT Organic, Sustainable and Alternative Crops
Cover Cropping

- Provide thick stand:
 - Seed at high rate
 - Drill, if possible
 - Irrigate
- Added benefits
 - Pest control
 - Soil fertility
 - Soil structure
 - Water quality
Influence of Tillage and Cover Crop on Weed Populations

<table>
<thead>
<tr>
<th>Tillage</th>
<th>Cover Crop</th>
<th>Weeds/ft²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional</td>
<td>None</td>
<td>12</td>
</tr>
<tr>
<td>None</td>
<td>None</td>
<td>5</td>
</tr>
<tr>
<td>None</td>
<td>Rye</td>
<td>0.9</td>
</tr>
<tr>
<td>None</td>
<td>Wheat</td>
<td>0.3</td>
</tr>
<tr>
<td>None</td>
<td>Barley</td>
<td>0.8</td>
</tr>
</tbody>
</table>

(Putnam et al., 1983)
Choosing a cover crop

• Step 1: Identify what function is needed from the cover crop
 – What is limiting production in a given system?
 low fertility?
 poor soil structure?
 weed or pathogen populations?
 – What functions can cover crops serve?
Choosing a cover crop

• Step 2: Identify the cover crop planting niche
 – Where does the cover crop fit in the crop rotation?
 • Warm-season or cool-season
 • Other climatic variables
 – Precipitation
 – Temperature (summer highs, winter lows)
 – Day-length
 • Compatibility with previous and subsequent cash crops
 – Define timing of critical cash crop operations, so that cover crop management does not conflict
Choosing a cover crop

- Step 3: Select cover crop that meets goals and requirements of steps 1 & 2
 - Consider benefits and drawbacks (perfect fit unlikely)
 - Consider cost and availability of seed (especially with organic and untreated seed)
 - Consider management costs (field operations needed to plant, kill, etc.)
Cover crop costs

• Direct costs
 – Seed
 – Establishment (e.g. tillage, drilling, irrigation)
 – Termination (e.g. mowing, tillage, rolling/crimping, herbicide)

Snapp et al., 2005
Cover crop costs

- **Indirect costs**
 - Interference with following cash crop
 - Soil temperature
 - N release
 - Residue
 - Management issues
 - Difficult termination
 - Weediness

Snapp et al., 2005
Cover crop costs

- Opportunity costs
 - Cost of forfeit income if a cash crop alternative was feasible
 - Can be the most important limitation

(photo: trekearth.com; Snapp et al., 2005)
Cool-season non-legumes

- **Rye** (*Secale cereale*)
 - Should not be confused with annual (*Lolium multiflorum*) or perennial ryegrass (*Lolium perenne*)
 - Very cold hardy
 - Good nutrient scavenger
 - High early season biomass
 - Allelopathic (DIBOA)
- **Other cereal grains**
 - Wheat (*Triticum aestivum*), barley (*Hordeum vulgare*), triticale (× *Triticosecale*)
 - Certain oat (*Avena sativa*) cultivars can be used when winter-kill is desired
- **Good for building organic matter**

(Slide courtesy of David Butler, UT)
Warm-season non-legumes

- Sorghum-sudangrass hybrid (*Sorghum bicolor* x *S. bicolor* var. *sudanense*)
- Very high biomass production, great for building soil organic matter
- High allelopathy and very competitive with weeds
- Suppressive against some pathogens and nematodes

(Clark, 2007; photos: agroatlas.ru)
Feeding the Crop

• Apply fertilizer near the row
• If using bagged organic fertilizers:
 – Band
 – Sidedress
• Avoid broadcasting nutrients for utilization by weeds
Selective Cultivation

- Steel in the Field
- Choice of cultivation implement depends on:
 - Size of weeds
 - Size of crops
 - Experience
 - Resources
 - $$$
 - Labor

Flex tines 6mm to 8 mm
(3/16” to 1/4”)

Main toolbar

Gauge wheel

Self-leveling pivot attachment
Precision in Field Prep

- Uniformity in row spacing
- Straight crop rows
- Adjusting equipment right the first time, for the whole season
Revival of Flaming

• Increasing number of herbicide resistant weeds
• Higher costs of herbicides
• More concern about pesticides in the environment
Advantages

• Can be used when soil too wet for cultivation
• No soil disturbance to stimulate weed emergence
• Also, added insect or disease control
• Exposure times of 65-130 milliseconds kill many annuals (Thomas, 1964)
Disadvantages

- Main fuel is liquid petroleum gas (propane)
- High initial cost
- Does not control all weeds equally
- May increase subsequent germination of some weed species
Field Design

• 2 crops → cabbage (‘Bravo’), tomatoes (‘Peto 696’)
• 2 bed types → raised beds, flat ground
• 2002 →
 – 2 flaming times → morning (10:30 a.m.), afternoon (5:00 p.m.) on 10 week old transplants
 – 4 tractor speeds:
 0 kph (weedy control) 8 kph (5 mph)
 4 kph (2.5 mph) 12 kph (7.5 mph)
• 2003 →
 – Morning flaming only on 12 week old transplants
 – 3 tractor speeds:
 0 kph (weedy control) 4 kph (2.5 mph)
 0 kph (clean control) 8 kph (5 mph)

(Wszelaki et al., 2007)
Red Dragon 8-Burner Row Crop Flamer

- Burners arranged in staggered crossfire pattern
- Set at 60° from horizontal, 4 inches above crop
- Pressure 30 psi
Evaluations

- Weed control 5, 20, 30, 40 and 50 days after flaming (DAF)
- Weed counts preliminary, and 4 and 15 DAF
- Plant injury (% versus control) 5 and 20 DAF
- Yield, head and core traits in cabbage
- Yield, diseases and disorders on tomatoes
Can the crops take the heat?

- More injury in cabbage
- 4 kph most damaged 5 DAF

- Injury not evident 20 DAF
Weed Control 2002

• All flaming treatments more effective than control
• 5 DAF, weed control most effective in 4 & 8 kph

• 20-50 DAF, 4 kph provided better control than all other treatments, with nearly 70% control 50 DAF
Weed Control 2003

- 5 DAF, 4 kph most effective in tomato with >70% control
- 15 DAF, control in the 4 kph treatment reduced to ~20%
Weed Control in Tomato

Weed Count (stems per 1 m²)

Lambsquarters

Chickweed

Purslane

Preliminary

4 DAF

15 DAF

(Wszelaki et al., 2007)
Blossom End Rot (%)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>2002</th>
<th>2003</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flat ground</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 kph (0 mph-weedy)</td>
<td>13.8ab</td>
<td>1.1a</td>
</tr>
<tr>
<td>0 kph (0 mph-clean)</td>
<td>****</td>
<td>1.2a</td>
</tr>
<tr>
<td>4 kph (2.5 mph)</td>
<td>5.1c</td>
<td>0.0b</td>
</tr>
<tr>
<td>8 kph (5 mph)</td>
<td>8.7bc</td>
<td>0.0b</td>
</tr>
<tr>
<td>12 kph (7.5 mph)</td>
<td>14.8a</td>
<td>****</td>
</tr>
</tbody>
</table>
Other Crop Successes

- Pear orchards
- Herbs (coriander, dill, parsley)
- Onions (pre-, post-emergence, transplants)
- Carrots
- Beets
Ecosystem Impacts

• Is flaming “organic”?
• Replacing one form of petroleum weed control with another?
• Hurting the ecosystem more than helping?
• Does it belong in the toolbox?
Other Thermal Options

• Infra-red weed control
• Steam
• Foam
• Renewable alternative fuels?
Infra-red Weed Control

- First developed in Europe
- Flame directed toward ceramic element or steel plate
- Radiates temperatures of 1800-2000 °F
- Danger of open flame minimized
- Also available in hand-held, push-wheeled and tractor mounted models
Hot Water & Steam Control

- Eliminates flame hazards in arid regions
- Will kill most weed seeds in top 10 cm of soil (White et al., 2000)
- Field steam sterilization not allowed under UK organic guidelines

Photo courtesy of Danish Research Centre for Organic Farming.
Foam
(Made from natural plan sugar extracts from corn and coconut)
Mulching

• Earlier crop production (7 to 21 days earlier)
• Higher yields per acre (2 to 3x higher)
• Cleaner produce
• More efficient use of water resources
• More efficient use of fertilizers
• Reduced soil and wind erosion
• Better management of certain pests
• Fewer weeds
• Reduced soil compaction
• Opportunity for efficient double or triple cropping

From ‘What are the components of a plasticulture vegetable system?’ by Bill Lamont, PSU, in HortTechnology, 1996.
Plastic - What does it do?

- Changes the micro-climate of the soil
- Or the ability to absorb or reflect the sun’s heat
- Can be used to warm soil earlier in the Spring/maintain warmth in Fall
- Cool down soil in Summer
- Mulch color determines how it will change the environment
How do you dispose of it?
Bio- or Photodegradable Mulches:

- Made with plant starches
- Broken down by microbes or the sun
- More expensive than plastics
- Easier disposal than plastics
- Sometimes do not hold up throughout the season, weed problems pop up later in season
- Technology rapidly developing
0.8 mil Mater Bi
Paper Mulch

- Can provide similar benefits to plastic mulch
- Can improve yields
- Recycled paper available for low cost
- Adheres well to soil when wet
- Sometimes breaks down too soon
- Newer creped versions
Solarization

- A preplant method for disinfecting soil for control of soilborne pathogens and weeds
- It captures solar energy and raises the temperatures in the soil to levels lethal to many soilborne pests
Solarization

- Cover soil with transparent plastic sheeting preferably during hottest part of the summer for 4-6 weeks
- Moisture needed to increase the thermal sensitivity of target organisms, improve heat conductivity, and enable biological activity
- Commercial use has been in regions with high solar radiation and temperatures
Anaerobic Soil Disinfestation

• Process of disinfecting soil by creating anaerobic conditions with the incorporation of easily-decomposable soil amendments, covering with plastic mulch, and irrigating to saturation to begin a 2- to 6-week treatment period
ASD + solarization impact on weeds

- With 2” or 4” initial irrigation, weed control in planting holes (mostly grasses) improved by poultry litter compost and/or molasses amendment compared to solarization alone.
- All treatments were equal to the MeBr standard and less than untreated control.
Alternative Products

• www.omri.org
• Corn gluten meal
• Herbicidal soaps
• Vinegar
• Clove oil
Timing, timing, timing

• The younger you can catch the weeds the better
• “White thread” stage
• You can’t plan the weather, so have more than one option at all times!
Combinations

• One tool may not do the job alone
• Combinations can provide greater efficacy
• Anticipate!
• Know your problem weeds!
• Know what is effective!
Experimentation

• What works for your neighbor may not work on your farm!
• Start small
• Compare your combinations side-by-side
• Leave a “control” or untreated row
• Be on the lookout for new things!
Does it belong in the toolbox?
Resources

• Sustainable Agriculture Research and Education Program, www.sare.org
 – Steel in the Field
 – Managing Cover Crops Profitably
Resources

• Appropriate Technology Transfer for Rural Areas, www.attra.ncat.org

• Pfeiffer, 1970, Weeds and What They Tell You, Biodynamic Farming Association

• The Organic Weed Management Website, http://www.css.cornell.edu/weedeco/WeedDatabase/index2.html
Thank you!

Questions?

Email annettw@utk.edu
http://organics.tennessee.edu
http://vegetables.tennessee.edu