Analysis and Selection of the CFGRP 4th Cycle Slash Pine Tree Improvement

June, 2017

Melbourne, Florida

OBJECTIVES

- Report details of the statistical analyses conducted to estimate breeding values (BV) from all parents and offspring tested of the 4th-generation of genotypes in slash pine.
- Perform new selections to advance breeding and testing of the 4th-generation of genotypes in slash pine.

OVERVIEW OF DATA

Traits Assessed

- Cumulative rust (CRust): presence of rust at any time of measurement.
- Annual increment of stem volume (ivol).

• 2nd and 3rd generation data included in analysis

- Data: PMX1 (8), PMX2 (8), and FS1 (8) series.
- Different models for PMX1, PMX2 and FS trials.
- Pedigree information for ALL generations.

DATA ANALYSIS: GOALS

Single-site Analysis

- Evaluate genetic worth of each site and trait.
- Estimate: Heritability (h²), Dominance (d²), etc.

Multi-Environmental Trial (MET) Analysis

- Obtain Volume, R50 predictions for 'paper selections'.
- Calculate MET heritability, site-to-site genetic correlations.
- Estimate genetic gain of new (and old) selections.

DATA ANALYSIS: OVERVIEW

Summary Statistics

Series	Test	Age	Surv	CRust	НТ	DBH
PMX1	BE766	8	81.4	51.4	33.5	5.6
PMX1	CE762	8	95.1	7.3	31.9	5.1
PMX1	EE764	5	89.0	-	18.5	3.4
PMX1	EE764	8	88.0	60.7	-	-
PMX1	FE765	8	65.6	16.8	32.8	5.8
PMX1	HE761	8	76.7	31.5	28.1	4.8
PMX1	IE760	8	74.6	51.5	30.1	5.2
PMX1	LE763	8	75.6	53.7	31.7	5.6
PMX1	SE767	8	88.4	46.9	23.9	4.9
PMX2	BE775	6	79.8	57.4	22.7	4.3
PMX2	EE769	6	63.8	57.1	23.6	4.6
PMX2	FE773	6	94.4	3.0	20.8	3.7
PMX2	HE768	6	88.5	18.8	22.5	3.9
PMX2	IE772	6	82.9	46.0	21.2	4.2
PMX2	ME774	6	89.2	18.8	22.4	4.0
PMX2	SE770	6	87.2	54.6	22.4	4.9
PMX2	WE771	6	73.8	55.6	15.8	3.2
FS	AE830	5	89.1	56.1	24.0	4.5
FS	BE832	5	92.0	35.6	22.5	4.3
FS	FE831	5	95.9	31.1	17.1	3.0
FS	HE835	5	91.6	46.3	21.2	4.3
FS	IE836	5	84.3	62.2	22.6	4.0
FS	LE834	5	69.0	69.0	18.8	3.7
FS	SE833	5	95.2	19.9	17.0	3.2
FS	WE837	5	89.6	59.3	21.3	4.3

SINGLE-SITE ANALYSIS

- Comparison of sites within and among experiment designs, trials series, and trait expression levels.
- Narrow-sense heritability h² estimated for all sites (both FS and HS heritability), and dominance d² estimated for sites with FS entries.
- This analysis was used to eliminate *noisy* sites, detect outliers, etc.

SINGLE-SITE ANALYSIS

 $y = \mu + rep + rep:row + rep:col + indiv + e$ PMX1

 $y = \mu + rep + rep:iblock + indiv + at(CP):family + e$ PMX2

 $y = \mu + rep + rep:iblock + indiv + family + e$ FS

fixed effect of replicate
random effect of row within replicate
random effect of row within replicate
random effects of incomplete block within replicate
random effect of genotype within a test, <i>indiv</i> ~MVN(0 , A)
random effect of family (where it corresponds)
random residual term, with <i>e</i> ~MVN(0 , D)

SINGLE-SITE ANALYSIS

Summary Genetic Parameters

			vtree	e - CP	vtree - OP	CRust - CP		CRust - CP CRust - OP		Selected
Project	Test	age	h²	d²	h²	h²	d²	h²	vtree	CRust
PMX1	BE766	8	*	*	0.416	*	*	0.431	Yes	Yes
PMX1	CE762	8	*	*	0.465	*	*	0.024	Yes	No
PMX1	EE764	5	*	*	0.318	*	*	*	Yes	No
PMX1	EE764	8	*	*	*	*	*	0.368	No	Yes
PMX1	FE765	8	*	*	0.380	*	*	0.088	Yes	No
PMX1	HE761	8	*	*	0.173	*	*	0.257	Yes	Yes
PMX1	IE760	8	*	*	0.309	*	*	0.354	Yes	Yes
PMX1	LE763	8	*	*	0.404	*	*	0.356	Yes	Yes
PMX1	SE767	8	*	*	0.344	*	*	0.346	Yes	Yes
PMX2	BE775	6	0.325	0.000	0.383	0.260	0.006	0.281	Yes	Yes
PMX2	EE769	6	0.488	0.052	0.237	0.246	0.000	0.180	Yes	Yes
PMX2	FE773	6	0.291	0.174	0.198	0.000	0.000	0.001	Yes	No
PMX2	HE768	6	0.171	0.000	0.135	0.148	0.000	0.098	Yes	No
PMX2	IE772	6	0.432	0.205	0.275	0.271	0.000	0.195	Yes	Yes
PMX2	ME774	6	0.148	0.000	0.284	0.040	0.000	0.049	Yes	No
PMX2	SE770	6	0.554	0.000	0.310	0.217	0.246	0.162	Yes	Yes
PMX2	WE771	6	0.466	0.214	0.411	0.267	0.000	0.183	Yes	Yes
FS	AE830	5	0.197	0.426	*	0.221	0.120	*	Yes	Yes
FS	BE832	5	0.219	0.259	*	0.218	0.099	*	Yes	Yes
FS	FE831	5	0.155	0.256	*	0.116	0.126	*	Yes	Yes
FS	HE835	5	0.279	0.229	*	0.294	0.199	*	Yes	Yes
FS	IE836	5	0.257	0.246	*	0.255	0.131	*	Yes	Yes
FS	LE834	5	0.166	0.161	*	0.272	0.062	*	Yes	Yes
FS	SE833	5	0.128	0.335	*	0.184	0.000	*	Yes	Yes
FS	WE837	5	0.140	0.297	*	0.318	0.097	*	Yes	Yes

MET ANALYSES

All data analyzed together with an animal model

- MET model based on complex additive variance-covariance structure between sites (corh)
- All individuals in pedigree have a breeding value (BV) estimation (or predicted genetic value) at each site!
- Overall BV is obtained by averaging BVs across 'relevant' sites.

$$\mathbf{G} = \begin{bmatrix} \sigma_1^2 & \rho\sigma_1\sigma_2 & \rho\sigma_1\sigma_3 & \rho\sigma_1\sigma_4 \\ \rho\sigma_1\sigma_2 & \sigma_2^2 & \rho\sigma_2\sigma_3 & \rho\sigma_2\sigma_4 \\ \rho\sigma_1\sigma_3 & \rho\sigma_2\sigma_3 & \sigma_3^2 & \rho\sigma_3\sigma_4 \\ \rho\sigma_1\sigma_4 & \rho\sigma_2\sigma_4 & \rho\sigma_3\sigma_4 & \sigma_4^2 \end{bmatrix}$$

MET ANALYSES

y = µ + test + test:rep + at(test):rep:row +
 at(test):rep:col +at(test):rep:iblock +
test:indiv + at(CP):family + at(CP):test:family + e

test test:rep at(test):rep:row at(test):rep:col at(test):rep:iblock test:indiv

at(CP):family
at(CP):test:family

е

fixed effect of trial fixed effect of replicate nested within trial random effect of row within replicate random effect of row within replicate random effects of incomplete block within replicate random effect of genotype within a test, *test:indiv*~MVN(**0**, **G \end A**) random effect of family random interaction of family within a trial random residual term, with e~MVN(**0**, **D**)

MET ANALYSES RESULTS

ivol

- $h^2 = 0.201$ $d^2 = 0.107$
- $a^{-} = 0.101$
- $r_{Ba} = 0.729$ $r_{Bd} = 0.851$

CRust

- $h^2 = 0.246$ $d^2 = 0.055$
- $d^2 = 0.055$

 $r_{Ba} = 0.878$ $r_{Bd} = 0.600$

- Genetic parameters are within expected ranges for slash pine.
- High value of r_{Ba} for both traits (> 0.73): low levels of GxE across the evaluated environments.
- Low levels of d² for both traits (< 0.11); additional gain that can be achieved by selecting the best families but not much.

MET ANALYSES

- Selection candidates were evaluated using predictions
 - Mean values of individual predictions across sites were used for ranking.
 - These values were used to compute volume gain (GVOL) and R50.
 - Breeding values were used for the entire pedigree (grandparents, parents and offspring) for references.

SELECTION STRATEGY

- Selections within a BG with ranking for GVOL, CRust.
- Index: 50/50 for CRust (~R50) and ivol within a single breeding group.
- 40 individuals per BG (~400 total).
- No more than 2 individuals per FS family.
- No more than 4 individuals per HS family.
- Ideal case: ~10-20% backward selection.
- Rust-infected, forked, or otherwise poor form excluded.
- Favor complementary mating and increased genetic diversity.

ESTIMATING GENETIC GAIN

- Normal approach: have a designated 'average' or 'reference'.
 - Difficult to have if data for analyses changes.
 - Mean site is not possible as management, site quality, silviculture practices, have changed.

Gains were evaluated relative to an 'arbitrary' baseline.

- Rust: mean of data was 49.79% incidence, so we assume that this is functionally R50.
- Stem Volume Increment:
 - 2nd generation parents were chosen as baseline of a genetic gain of ~5.75%.

SUMMARY OF SELECTIONS

• 393 individuals selected:

34 backward and 359 forward selections.

- 294/359 forward selections were first choice.
- Average estimated genetic gains:
 - **R50 25.15**
 - GVOL 10.89%.
- Some individuals were found to be outliers: -13.8 for R50 and 37.6% for GVOL
- Note: values are relative to an arbitrary reference.
- Important differences were noted between breeding groups, but all showed interesting levels of genetic gain.

ESTIMATES OF GENETIC GAIN

Breeding	Popula	ation (Select	tion)		Selected	
Group	n	R50	GVOL	n	R50	GVOL
В	4,624	39.43	-0.14	35	18.27	10.86
С	3,276	50.66	-0.49	41	31.17	11.13
E	3,340	28.52	5.92	36	10.71	13.89
F	2,838	49.05	-6.15	42	29.14	3.51
н	2,330	49.45	-0.65	42	34.09	9.15
I	1,652	37.33	4.78	40	24.29	14.30
L	3,611	40.02	-1.14	40	19.19	9.42
Μ	2,141	40.91	6.64	35	25.10	16.79
S	3,213	46.23	-7.04	38	29.23	6.59
W	2,598	46.87	3.41	44	27.20	14.17
Elite	2,554	34.26	9.61	0	-	-
Average	32,177	41.94	0.85	393	25.15	10.89

DISCUSSION

- Forward and backward selections were satisfactory a large amount of gain can be obtained for each breeding group.
- Statistical analyses demonstrates reasonable genetic control (heritability and dominance ratio) with acceptable levels of GxE.
- It can be expected that similar levels of genetic gain will be obtained in upcoming breeding cycles.
- The levels of genetic gain reported here for both R50 and GVOL are obtained in relation to an *arbitrary* baseline.
- The BVs of the parents, and their rankings, have changed with this analysis in relation to previous studies.

DISCUSSION

- BV estimates are available for each genotype at every site:
 - Users may extract more gain for their selections by evaluating/selecting genotypes from a subset of the trials (and BVs) tested.
 - Reasonable low levels of GxE justify averaging, across sites, BV's for parental rankings.

ACKNOWLEDGMENTS

Dr. Gary Peter Mr. Gregory Powell Mr. Andrew Sims

CFGRP companies and staff, that made the data available.

