Incorporating decision analysis and predictive design into stream restoration: The Stream Project

Daniel W. Baker, Peter R. Wilcock & Ben F. Hobbs

Johns Hopkins University
National Center for Earth Surface Dynamics
Intermountain Center for River Rehabilitation and Restoration

Presented:
August 2, 2011
Baltimore, MD
Overview

Project Goal:

- Link stream restoration preferences, objectives, and actions in transparent and predictive decision-analysis framework
 - Uncertainty and risk evaluation
 - Tools for assessment and design
 - Incorporate stakeholder preferences and social benefits
Goals of Talk

• Share motivation for the Stream Project
• Describe vital elements and project structure
• Discuss the distribution plans
Why?

• Stream restoration is widely practiced
• Many different objectives – need to evaluate tradeoffs
• Link between objective and action is weak
• Uncertainty is neglected
Consider Typical Project Objectives

- Project will reduce sediment and nutrient loadings
 - By how much? At what cost?
 - Is there a cheaper alternative?
- Project will provide instream habitat
 - Is habitat limiting?
 - What are the odds of population recovery?
 - What is it worth?
- Project will provide a stable, natural channel
 - What is that?
 - Is it consistent with other objectives?
We can do better

- Understanding of streams and their ecosystems is improving
- New tools are available
- Science and engineering skills of practitioners continue to improve
- Stream Project will assemble the tools and provide a decision framework
There is plenty to build on …

<table>
<thead>
<tr>
<th>Group</th>
<th>Year</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Working Group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US Army Corps of Engineers</td>
<td>2001</td>
<td>Hydraulic Design of Stream Restoration Projects</td>
</tr>
<tr>
<td>US Army Corps of Engineers</td>
<td>2001</td>
<td>Channel Restoration Design for Meandering Rivers</td>
</tr>
</tbody>
</table>
Key elements of the Stream Project:

#1 Interdisciplinary Interaction

#2 Objectives Linked to Actions

#3 Integrated Toolbox

#4 Unifying Case Studies
#1: Interdisciplinary Interaction

Stream Project

Natural Sciences

Engineering

Decision Analysis

Practice
#2 Objectives Linked to Actions

- Specific, quantifiable objectives explicitly linked to design choices
 - support tradeoff analysis
 - adaptive management
 - effective learning by doing

- Range of Objectives
 - Infrastructure protection
 - Decrease transport of nutrients/sediment
 - Recover endangered aquatic population
 - Improve aesthetics or recreational opportunities
#3 Integrated Toolbox

- Assessment of watershed and reach scale controls
- Quantify sediment and hydrologic drivers
- Predict physical, biological, and geochemical response to design manipulations
- Decision analysis for evaluating design alternatives
#4 Unifying Case Studies

- Apply framework and tools to diverse restoration projects
- Demonstrate the importance of the watershed context

Minebank Run, Baltimore County, MD
Stream Project Framework

Objectives

Goals

Assessment

Site Properties

Design

Actions

Decision Analysis

Design Acceptable?

NO

YES

Work toward restoration action

Non-stream restoration action
Stream Project: Chapters

1) Introduction
2) Objectives driven framework
3) Principles and strategies for ecosystem lift
4) Hydrology
5) Sediment
6) Fluvial geomorphology
7) Hydraulics
8) Sediment transport
9) Channel dynamics
10) Water quality
11) Energy and productivity
12) Physical habitat
13) Social value
14) Vegetation design
15) Decision analysis methods
16) Monitoring and adaptive management

Watershed Context

Site Dynamics: Assessment and Design

Making Decisions and Learning
Scalable Toolsets

<table>
<thead>
<tr>
<th>Required Information</th>
<th>Chair</th>
<th>Bike</th>
<th>Scooter</th>
<th>SUV</th>
</tr>
</thead>
</table>

- Do you have predictive tools you would like to share with us? Send us your tools and suggestions to info@streamproject.org
Distribution

- Printed manual with digital toolset
 - Draft underway
 - Final by July 2012
- Website: StreamProject.org
 - Coming in 2012!
- Training Workshops
 - Short courses at regional stream restoration conferences 2011-2012
What the Stream Project will NOT do for you

- Provide a ‘cookbook’ approach to stream restoration
- Circumvent engineering analysis and judgment
- Provide all the background you need
- Recommend reach scale restoration if the problem is at the watershed scale
- Eliminate stream restoration failures
What the Stream Project can do for you

• Help set the appropriate objectives given the site / watershed attributes and constraints
• Predicatively and transparently link objectives → site attributes → restoration actions
• Provide a range of scalable tools that quantify uncertainty
• Provide a bases for tradeoffs among objectives and between costs and benefits
<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation(s)</th>
<th>Specialties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peter Wilcock - Director</td>
<td>JHU, NCED, ICRRR</td>
<td>sediment transport, channel dynamics</td>
</tr>
<tr>
<td>Daniel Baker - Manager</td>
<td>JHU, NCED, ICRRR</td>
<td>channel design, water quality</td>
</tr>
<tr>
<td>Patrick Belmont</td>
<td>USU, NCED, ICRRR</td>
<td>watershed analysis, water quality</td>
</tr>
<tr>
<td>Phaedra Budy</td>
<td>USU, ICRRR</td>
<td>fish biology, ecosystem restoration</td>
</tr>
<tr>
<td>Jock Conyngham</td>
<td>USACE ERDC Env. Lab</td>
<td>aquatic habitat, fishery restoration</td>
</tr>
<tr>
<td>Martin Doyle</td>
<td>U. North Carolina</td>
<td>channel design, restoration strategies</td>
</tr>
<tr>
<td>Craig Fischenich</td>
<td>USACE ERDC Env. Lab</td>
<td>environmental assessment, riparian ecology</td>
</tr>
<tr>
<td>Richard Fischer</td>
<td>USACE ERDC Env. Lab</td>
<td>riparian ecology</td>
</tr>
<tr>
<td>Ben Hobbs</td>
<td>JHU, NCED</td>
<td>environmental economics, decision analysis</td>
</tr>
<tr>
<td>Meg Jonas</td>
<td>USACE ERDC Env. Lab</td>
<td>hydraulics and channel design</td>
</tr>
<tr>
<td>Gary Parker</td>
<td>UIUC, NCED</td>
<td>sediment transport, channel dynamics</td>
</tr>
<tr>
<td>Jack Schmidt</td>
<td>USU, ICRRR</td>
<td>fluvial geomorphology, hydrology</td>
</tr>
<tr>
<td>Dave Shepp</td>
<td>USACE Headquarters</td>
<td>water quality, environmental restoration</td>
</tr>
<tr>
<td>Barb Utley</td>
<td>USU, NCED, ICRRR</td>
<td>fluvial processes, water quality monitoring</td>
</tr>
<tr>
<td>Joe Wheaton</td>
<td>USU, ICRRR</td>
<td>multi-dimensional modeling, instream habitat</td>
</tr>
</tbody>
</table>
Questions?

Email us: info@streamproject.org
Timeline

2010

Project initiated: Team assembled

Objectives-driven framework defined

Meeting: Common vision established

Scope of tools defined

Meeting: Chapters outlined and case studies

Draft chapters written & assembled

2011

Meeting: Evaluate draft manual and toolset

Application of Stream Project to case studies

Short courses regional meetings

2012

Meeting: Assemble final manual and software

Final editing and software testing