Urban Ecosystem Restoration: An Example of Stream and Lake Restoration in Metropolitan Atlanta, GA

Jill Stachura, Principal Scientist
Agenda

- Background on Gwinnett County, Georgia’s Watershed Improvement Program
- Example Project Selection and Implementation

Gwinnett County:
Population: 780,000
Area: 437 sq. miles
1,300 miles drainage system
80,000 structures maintained
SU income $32M/yr
Goal: Streams meet designated use
Establish WQ target
TSS <1,600 lbs/ac/yr
Gwinnett County: County-Wide Watershed Protection Plan

Watershed Protection Plan Outlined Three Strategies

- New development and redevelopment requirements
- Improving affected areas
- Supporting activities to improve watersheds
- Meeting NPDES/TMDL Regulatory Requirements
Stream Walks
BMP Inventory
GIS WQ Modeling
CIP Development

BC completed WIPs for 60% of County ~ 300 sq. miles.
Watershed Analysis Using BC’s GIS Based Watershed Improvement Plan (WIP) Tools

GIS

- Develop Project GIS/Database
 - Establish GIS layers
 - Delineate 25-acre streams

- Preliminary Model
 - Unit runoff discharge ratio
 - TSS yield

Field Inventory

- Identify Stream Segments
 - Determine ≥ stream miles up to 25-acre catchment
 - Determine Level I & Level II stream miles

- BMPS & New BMPS Sites
 - Identify existing BMPS using GIS
 - Locate new BMPS sites
 - Develop BMPS site hydrology and datasets

- BMP Field Inventory
 - Verify BMPS existence & collect data
 - Identify maintenance issues
 - Assess feasibility of new BMPS sites

- Update Project GIS/Database
 - Add verified BMPS information
 - Add stream condition data

- Model - Existing Conditions
 - Streambank TSS production
 - Existing BMPS effects
 - Existing TSS load and yield

CIP Development

- Stream Restoration Projects
 - Revisit/evaluate field-identified projects
 - Determine TSS & habitat effects
 - Estimate cost & benefits

- BMP Projects
 - Develop retrofit/new BMPS project
 - Determine TSS, flow, & habitat effects
 - Estimate cost & benefits

- Model - CIP Development
 - Reach CIP –
 - Select projects to remove Redline TSS streams
 - Select “best” projects based upon benefit/cost
 - HUC12 CIP –
 - Subset of Reach CIP
 - Meets TSS goal at HUC12 watershed level

TSS
TN
TP
BOD
FC
Others

Brown AND Caldwell
WIP Tools Overview

- Grid based, flow accumulation GIS model
- Develops hydrologic and water quality baseline conditions
- Evaluates stream restoration and best management practices (BMPs)
- Predicts improvements from projects based on baseline conditions
- Estimates in-stream erosion and pollutant loadings in addition to loadings from the contributing watershed
- Tool to develop CIP list in order to meet TSS loading goals for the County
WIP Tools Modeling / CIP Development
Gwinnett County: Project Report and Project Summary Sheets

- Overview of inventory results: BMPs and Streams
- Recommended CIP and costs: Reach and HUC-12
- Study area maps by subwatershed and project sheets
Lake Claiborne Restoration Project

- Identified as BMP retrofit in the WIP – determined to need an outlet control structure and additional water quality and channel protection volume storage
- Lake silted in due to upstream development
- Homeowner complaints
- County-owned parcel
Lake Claiborne – 1972 and 2007
Lake Claiborne Restoration

- 2 tributaries, 600 acre developed watershed
- 5 acre lake
- Water depth = <1-5 ft
- Filled sediment thickness 1-4 ft
- ~40,000 cy sediment
- 2 wetlands delineated
Completed Survey and Sediment Measurement and Testing
Sediment Testing Results

<table>
<thead>
<tr>
<th>Sample Identification</th>
<th>Sample Type</th>
<th>Sample Depth</th>
<th>Soil Classification</th>
<th>As R'cd % Moisture</th>
<th>Atterberg Limits</th>
<th>Grain Size Distribution</th>
<th>Compaction</th>
<th>Unit Weight</th>
<th>Permeability</th>
<th>Organic Content</th>
<th>Additional Tests Conducted (See Notes)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>NEP-1</td>
<td>COMBO</td>
<td>1.0-7.0'</td>
<td>ML</td>
<td>44.9</td>
<td>32 27 5 3.52</td>
<td>99.4 64.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>NEP-1</td>
<td>NEP-1-1</td>
<td>1.0'</td>
<td>(ML)</td>
<td>45.4</td>
<td>-</td>
<td>-</td>
<td>100.0 58.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>NEP-1</td>
<td>NEP-1-3</td>
<td>3.0'</td>
<td>(ML)</td>
<td>51.7</td>
<td>-</td>
<td>-</td>
<td>99.8 75.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>NEP-1</td>
<td>NEP-1-6</td>
<td>6.0'</td>
<td>(ML)</td>
<td>50.1</td>
<td>-</td>
<td>-</td>
<td>99.2 64.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>NEP-1</td>
<td>NEP-1-7</td>
<td>7.0'</td>
<td>(ML)</td>
<td>33.6</td>
<td>-</td>
<td>-</td>
<td>98.5 51.9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>NEP-2</td>
<td>COMBO</td>
<td>1.0-4.0'</td>
<td>ML</td>
<td>52.1</td>
<td>41 34 7 2.74</td>
<td>99.9 80.3</td>
<td>-</td>
<td>100.8 15.1</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>NEP-2</td>
<td>NEP-2-1</td>
<td>1.0'</td>
<td>(ML)</td>
<td>82.0</td>
<td>-</td>
<td>-</td>
<td>100.0 86.9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>NEP-2</td>
<td>NEP-2-4</td>
<td>4.0'</td>
<td>(ML)</td>
<td>28.1</td>
<td>-</td>
<td>-</td>
<td>99.9 70.0</td>
<td>-</td>
<td>28.1 92.5</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>NWP-1</td>
<td>COMBO</td>
<td>1.0-5.0'</td>
<td>ML</td>
<td>43.6</td>
<td>36 29 7 2.09</td>
<td>100.0 78.6</td>
<td>99.1 20.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>NWP-1</td>
<td>NWP-1-1</td>
<td>1.0'</td>
<td>(ML)</td>
<td>58.9</td>
<td>-</td>
<td>-</td>
<td>100.0 81.5</td>
<td>-</td>
<td>58.9 62.0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>NWP-1</td>
<td>NWP-1-5</td>
<td>5.0'</td>
<td>(ML)</td>
<td>29.1</td>
<td>-</td>
<td>-</td>
<td>100.0 67.7</td>
<td>-</td>
<td>29.1 91.4</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>NWP-2</td>
<td>COMBO</td>
<td>1.0-7.0'</td>
<td>ML-ML</td>
<td>29.7</td>
<td>27 21 6 1.51</td>
<td>99.6 62.5</td>
<td>109.5 14.8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>NWP-2</td>
<td>NWP-2-1</td>
<td>1.0'</td>
<td>(ML)</td>
<td>30.0</td>
<td>-</td>
<td>-</td>
<td>99.5 69.0</td>
<td>-</td>
<td>30.0 89.3</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>NWP-2</td>
<td>NWP-2-2</td>
<td>2.0'</td>
<td>(ML)</td>
<td>30.1</td>
<td>-</td>
<td>-</td>
<td>99.6 60.1</td>
<td>-</td>
<td>30.1 89.2</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>NWP-2</td>
<td>NWP-2-7</td>
<td>7.0'</td>
<td>(ML)</td>
<td>28.3</td>
<td>-</td>
<td>-</td>
<td>99.7 72.4</td>
<td>-</td>
<td>28.3 92.5</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

ABBREVIATIONS:
- LIQUID LIMIT (LL)
- PLASTIC LIMIT (PL)
- PLASTICITY INDEX (PI)
- LIQUIDITY INDEX (LI)
- SPECIFIC GRAVITY (Gs)
- MOISTURE (Mc)

NOTES:
- T = TRIAXIAL TEST
- U = UNCONFINED COMPRESSION TEST
- C = CONSOLIDATION TEST
- DS = DIRECT SHEAR TEST
- O = ORGANIC CONTENT
- P = pH
- * = one point proctor

Prefer to analyze incremental sediment depths.
Pre-construction Monitoring

- **Water Quality Sampling**
 - High bacteria, high TSS during storms, high nitrogen, low DO

- **Habitat Assessment**
 - Suboptimal

- **Benthic macro-invertebrate assessment**
 - Poor

- **Geomorphic measurements**
 - Aggraded, high organics, backwater effects
- 1,200 LF stream restoration
- 2 off-line sediment ponds
- Double 6’x6’ CBC on trib
- 13,000 plants
- Created submerged island
- Removed 40,000 cy
- Water depth = 5-9 ft
- New outfall with operable gate; lowered NWL 0.9 ft; additional flood protection
- Walking trail
- Restocked fish
Lake Claiborne Restoration - Permitting

- Two wetlands delineated – each ~1.2 acres
- Located within original footprint of the lake
- Aggraded areas of lake
- Two streams – 1,590 lf
- NWP 43 and 27
Contractor Elected to Dewater and Excavate
Issue - Discharge Water Turbidity Control

Polymer addition.
Filter bag.

Minor issue with hauling of wet sediment.
Dump truck incident.
Lake Claiborne Restoration

Off-line sediment pond

Littoral shelf

Stream

Trail

Lake

Post

Pre
Lake Claiborne Restoration
Lake Claiborne Restoration

- Removes 442,043 lbs/yr TSS
- Completed in 6 months
- $1.2M Construction Cost
- $3.68/lb TSS
- County average cost per pound is $10/lb TSS
- Homeowners happy
- Will monitor for WQ and habitat improvements
Post-Construction Monitoring

- Vegetation
- Water Quality
- Macro Invertebrates
- Habitat
- Geomorphology
Urban Restoration Issues

- Easements
- Traffic
- Utilities
- Trash and Debris
- Maintenance
- Downstream
- Neighbors