

Florida Coastal Everglades Long Term Ecological Research

Carbon Storage and Soil Burial Rates in Riverine and Scrub Mangrove Forests of the Florida Coastal Everglades, USA

Edward Castaneda¹
Robert R. Twilley²
Victor H. Rivera-Monroy²

¹Southeast Environmental Research Center, Florida International University ²Department of Oceanography and Coastal Sciences, Louisiana State University

Riverine Mangrove Forests

Landscape Vegetation Patterns

Scrub Mangrove Forests

Environmental Gradients

Hurricane Disturbances

Landscape Gradients in Resources (nutrients), Regulators (sulfide), and Hydroperiod

- Hydroperiod: Tide-dominated
- P gradient: downstream to upstream limitation upstream (N:P = 105)
- PW Sulfide: Negligible (<0.06 mM)
- PW Salinity: 5-27 ppt

- Permanently or seasonally flooded
- No P gradient: P limitation in all sites
 (N:P ranges from 70-109)
- High (1.0-2.3 mM)
- 17-20 ppt

High Recurrence of Tropical Storms and Hurricanes in South Florida

- South Florida has been struck by 40 named storms since 1926.
- Three category 4 hurricanes have impacted the FCE mangrove zone.
- The frequency of direct hits by category 3-5 hurricanes is ~once every 20-30 years.

Hurricane Wilma caused Defoliation, Tree Snapping, and Uprooting

Wilma (category 3) landed at FCE on October 24, 2005

Research Questions

- What are the carbon allocation patterns between above- and belowground components of mangrove vegetation across the P-limited conditions of FCE?
- What is the total (vegetation and soil) ecosystem carbon storage in riverine and scrub mangrove forests of the Florida Everglades?
- What are the long-term soil accretion and carbon burial rates, and how do they vary between mangrove ecotypes?

FCE-LTER Mangrove Sites

Mangrove Sites

- Shark River:
- SRS-4 (upstream)
- SRS-5 (upstream)
- SRS-6 (downstream)
- Taylor River:
- TS/Ph-6 (upstream)
- TS/Ph-7 (upstream)
- TS/Ph-8 (downstream)

Aboveground Biomass

- Shark River sites and TS/Ph-8 (two 20 x 20 m plots).
- Trees (DBH > 2.5 cm) were tagged and measured (May 2001 to May 2004 - sampling is ongoing).
- Species-specific allometric equations for FCE mangroves.
- TS/Ph-6 & 7: Coronado-Molina 2004.

(5-20 mm).

• Dec 2000 and Dec 2002.

Soil C and Nutrient Pools

- May 2001 and Jan 2002.
- Soil cores (15 x 45 cm) collected from each site.
- Cores were divided into 2 cm intervals.
- Bulk density (BD), OM content, CNP, and burial rates using ¹³⁷Cs.

Ecosystem C Storage

Belowground Biomass

• Root cores (10 x 90 cm) collected from each site:

- Shallow (0-45 cm) and Deeper (45-90 cm) zones.

• Live roots: Fine (<2 mm), Small (2-5 mm), and Coarse

- Vegetation (AG + BG): Biomass * [C]
- Soil: [C] * BD * depth interval
- Ecosystem C storage: Vegetation + Soil (0-45 cm)

Above- and Belowground Biomass (2001-2004)

Mean AG biomass:

- Shark River = 122 \pm 20 Mg ha⁻¹
- Taylor River = 9.4 ± 2.7 Mg ha⁻¹
- *R. mangle*: 70-80% of total biomass in upstream sites of Shark River.
- *L. racemosa*: 43% of total biomass in SRS-6.
- Average BG biomass = 35 ± 4 Mg ha⁻¹
- Root biomass allocation was higher in mangrove sites with lower P fertility.

Above- and Belowground Carbon Storage

- Vegetation C storage is 4x higher in riverine mangroves compared to scrub forests.
- <u>Shark River</u>: Wood contributed 67-84% of the total C storage.
- <u>Taylor River</u>: Roots accounted for 61-88% of the total C storage.

Ecosystem Carbon Storage (Vegetation & Soil)

Long-term Soil Organic Carbon Burial Rates

 $1.31 \pm 0.1 \, \mathrm{Mg \, ha^{\text{-}1} yr^{\text{-}1}} \, 0.62 \pm 0.2 \, \mathrm{Mg \, ha^{\text{-}1} yr^{\text{-}1}}$

- Deeper organic peat deposits in Shark River; peat depth ranges from 2 (SRS-4) to 4.5 m (SRS-6).
- Shallow (<1.5 m) soil peat in Taylor River basin.
- Unaccounted C in deeper (>45 cm) mangrove soils.

Deeper core section: 1.94 to 2.45 m Courtesy: Qiang Yao, LSU

top 45 cm of soils

Summary

- Contrasting landscape patterns of vegetation (above- and belowground) C storage.
- P fertility and hydroperiod gradients control these patterns.
- Riverine mangroves allocated four times more C to vegetation relative to scrub mangrove forests.
- Wood: Highest contribution (67-84%) to the total C storage in vegetation (riverine).
- Higher allocation of carbon to roots (61-88%) in scrub mangroves of Taylor River.
- High root:shoot ratios.
- P limitation and high soil stress conditions.
- Soils represented the largest (67-90%) C pool of the total ecosystem storage in riverine and scrub mangroves.
- Deeper (>45 cm) soil peat deposits represent a significant pool of soil C storage (unaccounted in most studies).
- Significant role of belowground allocation to carbon sequestration in mangroves of south Florida.