TROPHIC FOOD WEB DYNAMICS ACROSS A MANGROVE/UPLAND ECOTONE

Erin Kiskaddon

Department of Integrative Biology University of South Florida, Tampa FL

Contact : ekiskaddon@gmail.com

Florida Mangrove Ecotone

Mixed Mangroves

Saltmarsh

Upland Forest

Natural habitat connectivity

Most Florida Mangrove Habitat Connectivity

Armases cinereum (Family: Sesarmidae) MANGROVE, SALTMARSH, UPLAND FOREST

- Wide-ranging

- Highly abundant in Florida
- See 个abundance and 个 size in upland forest habitat WHY?

Goal: Investigate feeding patterns of Armases cinereum across a mangrove/upland forest ecotone

- 2 Laboratory Feeding Experiments
 - Stable Isotope Analysis

Mangrove Herbivory: Preference for Mangrove Species and Level of Decomposition

3 Choices Simultaneously: ½ leaf of each
Laguncularia racemosa, Avicennia germinans, Rhizophora mangle
1 level of decomposition per trial:
Fresh, Senescent, Partially Decomposed

Average Consumption by Armases for Each Mangrove Species by Trial Type

Multi-Choice Experiment: Preference for Common Mangrove/Upland Ecotone Prey

• Choice between 5 plant food items and 1 animal prey common at study site, UTBRP Common cricket Iva **Borrichia** Grass

(Gryllus spp.)

(Nephrolepis biserrata)

Black Mangrove

Partially-Decomposed (from previous experiment) (*Avicennia germinans*)

Results:

supplications of the second se

Manly-Chesson Alpha Values for Plant Prey Items Consumed by Armases in Multiple-Choice Feeding Assay Proportion of Initial Mass Consumed

Rank by Electivity Index:

- 1. Cricket*
- 2. Iva
- 3. Black Mangrove
- 4. Borrichia
- 5. Fern
- 6. Grass

Exploring Feeding via Stable Isotope Analysis $\uparrow \delta^{15} N$ due to insect contamination? Use of N-

- Goal: Confirm the laboratory-observed selectivity behavior with stable-isotope analysis
- Analysis of observed δ¹⁵N and δ¹³C ratios using simmr

(R software package)

Potential sources selected based on previous experiments, literature, and direct observation of *Armases cinereum* in the field. Some potential sources omitted due to mixing model restrictions.

Simmr Mixing Model Results

- Animal prey preference in lab and greatest proportion in diet of crabs at ecotone
- Contributions from both upland and mangrove detritus
- Iva and Detrital Avicennia both <15% of diet

Conclusions

- 1. Armases shows preferences for partially-decomposed Black Mangrove leaves when provided mangrove leaves
- 2. Armases displayed strong selectivity for animal prey, yet among plant foods consumed we observed preference for Iva and Black Mangrove
- 3. Stable isotope analysis revealed small % diet contribution of Iva and Black Mangrove
 - Possibly due to overlapping signatures, contamination by leaf-boring insects, or Nitrogen contamination by locally-applied fertilizers

Ongoing Work:

- Does the presence of adjacent upland forest influence the trophic position of Armases cinereum in Tampa Bay?
- Does presence of upland forest influence reproductive output, size, and gender ratios of *Armases cinereum* populations?

Acknowledgements

- Bell Lab, USF Tampa
 - Susan Bell (advisor)
 - Kiley Chernicky (undergraduate)
 - Shannon Grogan
 - Derrick Hudson
 - Stephen Hesterberg
- USF Stable Isotope Lab
 - Jessica Wilson
- Volunteers
 - Cristina Blanco
 - Mary Kate O'Donnell

- Friends and Family
- Funding Sources
 - St. Petersburg Audubon Society
 - USF Department of Integrative Biology
 - Fern Garden Club of Odessa

