Partitioning root zone and deep sediment dynamics using paired surface elevation tables in Everglades National Park, Florida, USA.

Karen M. Balentine and Thomas J. Smith III

U.S. Geological Survey, Southeast Ecological Science Center, Gainesville, FL

Introduction

Surface elevation tables (SETs) are used worldwide in a variety of coastal wetland environments to measure long-term surface elevation change. Long-term measurements are important to determine if the system is able to keep pace with sea-level rise (Klein et al. 1995). Soil elevation change is a combination of several processes that occur within the soil profile (Whelan et al. 2005). These processes include settlement, erosion, deposition, and groundwater discharge (Cahoon et al. 2001). By using a paired shallow and deep SET design, shallow root zone and deep sediment profile change dynamics can be determined (Whelan et al. 2005, see Figure 1).

Hydrology can influence sedimentology both directly and indirectly. Local hydrology controls the solute state of the soil and indirectly regulates the process of root growth and decomposition and organic matter accumulation (Childers et al. 1993). Root growth and sediment compression are processes directly influenced by the hydrologic conditions of each site (Cahoon et al. 2001, Whelan et al. 2005). Groundwater levels regulate the shrink-swell response of the soil profile.

Long-term monitoring of wetland elevation change is important to evaluate the health and vulnerability of coastal wetlands. The Comprehensive Everglades Restoration Plan (CERP) has included wetland surface elevation change as a Performance Measure for monitoring restoration success (Recover 2009).

Methods

Twenty-four paired shallow and deep rod SETs were installed at eight sites along downstream-upstream transects on the Shark and Lostmans Rivers, on the southwest coast of Everglades National Park (ENP). Each SET pair was installed adjacent to preexisting hydrologic stations (Figures 2, 3 and 4).

A linear regression was calculated for daily rate of change of the deep SETs and surface water levels as the independent variable. Regression was also run for groundwater gage recorder and surface water recorder elevation change was measured quarterly for five years (2006-2011). Each hydrologic station contains an automated groundwater gage recorder and surface water recorder. Elevation change was measured for five years (2006-2011). Results

Linear Regression

Significant results were found for LO2, SH1, SH3, SH4 (p < 0.05) and SH5 (0.05 < p < 0.1) (Table 1).

At upstream (LO1 and SH1) and downstream sites (LO2 and SH2) the daily rate of change (DRC) of soil elevation is explained by a negative relationship with DRC of groundwater levels (Table 1, Figure 5).

The relationship at downstream sites (LO1, SH1, SH3 and SH5) is positively related to the DRC of groundwater levels (Table 1, Figure 6).

No significant results were found for surface water levels and shallow elevation at the downstream sites (Table 2). Discussion

Wetlands in the coastal Everglades are faced with impacts from global climate change such as, sea level rise, altered precipitation and temperature, in addition to impacts from CERP. CERP will add freshwater to the system. How will this alter wetlands productivity, including the belowground production that leads to peat formation and buildup? Another important question is how the increased surface water levels from CERP will impact groundwater levels.

Our results clearly show a relationship between groundwater levels and sediment surface elevation at a number of sites in the coastal Everglades. More importantly, we have shown that the relationship changes depending on location in the flow-way. At upstream locations the relationship is negative, with decreasing water levels leading to increases in sediment surface elevation. This may be because particulate material suspended in the water columns settles and becomes cohesive. At downstream, mangrove forest sites, the relationship is positive. As groundwater levels increase, sediment surface elevation increases. This observation was first reported by Whelan et al. (2005) from a single location. We have now corroborated this observation and extended the finding to other locations in the mangrove zone.

The response of elevation change to groundwater across the landscape is important because it represents a regional effect and not a local one. This is an important concept for restoration projects and predicting long term stability of wetlands in the face of sea level rise.

Literature Cited


Acknowledgements

This paper was presented at the NASSCO Annual National Waterways Conference in Orlando FL, June 3-6, 2013. Funding for this project was provided by U.S. Army Corps of Engineers Southern Nevada District through the Greater Everglades restoration program. Support for this project is provided by the Everglades Initiative of the USFSM Comprehensive Everglades Restoration Plan, South Florida Water Management District, Port Everglades Board, FL.