Eco-Hydrology Modeling in Coastal Louisiana to Assess Project Effects on the Landscape

Dr. Ehab Meselhe
Director of Natural Systems Modeling and Monitoring at the Water Institute of the Gulf (TWIG)
June 7, 2012
Team Members

<table>
<thead>
<tr>
<th>Member</th>
<th>Affiliation</th>
<th>Title</th>
<th>Sub-Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ehab Meselhe</td>
<td>Water Institute, University of Louisiana Lafayette</td>
<td>Work Group Leader, Sub Group Leader</td>
<td>Chenier Plain</td>
</tr>
<tr>
<td>Alex McCorquodale</td>
<td>University of New Orleans</td>
<td>Water Quality Specialist, Sub Group Leader</td>
<td>Pontchartrain-Barataria</td>
</tr>
<tr>
<td>Jeff Shelden</td>
<td>Moffat & Nichol</td>
<td>Sub-Group Leader</td>
<td>Atchafalaya Basin</td>
</tr>
<tr>
<td>Mark Dortch</td>
<td>Moffat & Nichol</td>
<td>Water Quality Specialist</td>
<td>Atchafalaya Basin</td>
</tr>
<tr>
<td>Gerald Duszynski</td>
<td>Fenstermaker</td>
<td>Technical Advisor, QA/QC</td>
<td>–</td>
</tr>
<tr>
<td>Stokka Brown</td>
<td>Fenstermaker</td>
<td>Point of Contact, Modeler</td>
<td>Chenier Plain</td>
</tr>
<tr>
<td>Mallory Davis</td>
<td>Fenstermaker</td>
<td>Modeler</td>
<td>Chenier Plain</td>
</tr>
<tr>
<td>Peter Elkan</td>
<td>Moffat & Nichol</td>
<td>Modeler</td>
<td>Atchafalaya Basin</td>
</tr>
<tr>
<td>Jonathan Wang</td>
<td>Moffat & Nichol</td>
<td>Modeler</td>
<td>Atchafalaya Basin</td>
</tr>
<tr>
<td>Jenni Schindler</td>
<td>University of New Orleans</td>
<td>Modeler</td>
<td>Pontchartrain-Barataria</td>
</tr>
</tbody>
</table>
Modeling in a Systems Context

Stage, Salinity, Water Quality

Stage, Salinity

Land Configuration, Elevation

Eco-hydrology

Stage, Salinity, Sediment

Land Configuration, Elevation

Wetland Morphology

Dominant Vegetation

Vegetation

Dominant Vegetation

Ecosystem Services

Stage

Island Configuration

Barrier Shoreline Morphology

Storm Surge/Waves

Surge, Waves

Risk Assessment
Outline

- Model Domain
- Model Setup
 - Input & Output
 - Assumptions
 - Mechanics
- Model Testing
 - System Quality
 - Calibration & Validation
- Model Simulation Process
- Master Plan Results
Outline of Model Domain
<table>
<thead>
<tr>
<th>Region</th>
<th>Channel</th>
<th>Open Water</th>
<th>Marsh</th>
<th>Upland</th>
<th>Offshore</th>
<th>Total</th>
<th>Surface Area Ranges in km² (Average)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PB</td>
<td>-</td>
<td>89</td>
<td>7 Nodes</td>
<td>89</td>
<td>2.2 – 5844 (716)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend
- PB Offshore Nodes
- PB Model Domain
- PB Polygons

Map: Pontchartrain/Barataria Basin Model Domain
<table>
<thead>
<tr>
<th>Region</th>
<th>Channel</th>
<th>Open Water</th>
<th>Marsh</th>
<th>Upland</th>
<th>Offshore</th>
<th>Total</th>
<th>Surface Area Ranges in km² (Average)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>74</td>
<td>21</td>
<td>70</td>
<td>-</td>
<td>4</td>
<td>169</td>
<td>0.04 – 3361 (118)</td>
</tr>
</tbody>
</table>

Atchafalaya Basin Model Domain

Legend
- AA Model Domain
- AA Polygons

Milage Scale

0 12.5 25 50 75 100
<table>
<thead>
<tr>
<th>Region</th>
<th>Channel</th>
<th>Open Water</th>
<th>Marsh</th>
<th>Upland</th>
<th>Offshore</th>
<th>Total</th>
<th>Surface Area Ranges in km² (Average)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP</td>
<td>33</td>
<td>19</td>
<td>105</td>
<td>-</td>
<td>6 Nodes</td>
<td>157</td>
<td>0.6 – 1844 (86)</td>
</tr>
</tbody>
</table>

Legend
- CP Locks
- CP Model Domain
- CP Offshore Nodes
- CP Polygons

Chenier Plain Model Domain
Model Input and Output

<table>
<thead>
<tr>
<th>Model Input</th>
<th>Model Output</th>
<th>Symbol</th>
<th>Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wind Speed</td>
<td>Stage</td>
<td>STG</td>
<td>Daily</td>
</tr>
<tr>
<td>Water and Air Temperature</td>
<td>Salinity</td>
<td>SAL</td>
<td>Monthly</td>
</tr>
<tr>
<td>Gulf Stage, Salinity, and Nutrients</td>
<td>Sediment Retention</td>
<td>TSS</td>
<td>Monthly</td>
</tr>
<tr>
<td>River Discharge, Sediment, and Nutrients</td>
<td>Accretion</td>
<td>ACC</td>
<td>Yearly</td>
</tr>
<tr>
<td>Diversion Discharge, Sediment, and Nutrients</td>
<td>Total Kjeldahl Nitrogen</td>
<td>TKN</td>
<td>Monthly</td>
</tr>
<tr>
<td></td>
<td>Tidal range</td>
<td>TRG</td>
<td>Monthly</td>
</tr>
<tr>
<td></td>
<td>Nitrate + Nitrite Nitrogen</td>
<td>NO3</td>
<td>Monthly</td>
</tr>
<tr>
<td></td>
<td>Water Temperature</td>
<td>TMP</td>
<td>Monthly</td>
</tr>
<tr>
<td></td>
<td>Ammonium Nitrogen</td>
<td>NH4</td>
<td>Monthly</td>
</tr>
<tr>
<td></td>
<td>Dissolved Organic Nitrogen</td>
<td>DON</td>
<td>Monthly</td>
</tr>
<tr>
<td></td>
<td>Total Phosphorus</td>
<td>TPH</td>
<td>Monthly</td>
</tr>
<tr>
<td></td>
<td>Soluble Phosphorus</td>
<td>SPH</td>
<td>Monthly</td>
</tr>
<tr>
<td></td>
<td>Phytoplankton as Chlorophyll-a</td>
<td>ALG</td>
<td>Monthly</td>
</tr>
<tr>
<td></td>
<td>Detritus</td>
<td>DET</td>
<td>Monthly</td>
</tr>
<tr>
<td></td>
<td>Water Age</td>
<td>AGE</td>
<td>Monthly</td>
</tr>
<tr>
<td></td>
<td>Nitrogen Removal Rate</td>
<td>NRM</td>
<td>Yearly</td>
</tr>
</tbody>
</table>

Bolded, Red Inputs are varied based on scenario
Model Assumptions

- Modeling approach based on conservation of mass
- Momentum/dynamic exchange not included
- Hydrology and constituents semi-coupled
- Flow variables spatially averaged over each compartment
- Water column fully mixed and aerobic at all locations and times
- Transfer of nutrients from bed to water column not included
- Compartments prevented from filling up due to deposition (AA model only)
- Sediment accretion in channels is not included
Model Mechanics

PB

Cell Type
- Upland
- Marsh
- Open water

Exchange Type
- Inter-cell exchange
- Intra-cell exchange
- Tributary input
- Mississippi River input
- Precipitation-Evaporation
- Precipitation-Evapotranspiration

a. Plan view of PB model dynamics

AA & CP

Cell Type
- Marsh
- Open water
- Channel

Exchange Type
- Inter-compartment exchange
- Tributary input
- Precipitation-Evapotranspiration

a. Plan view of AA and CP model dynamics

b. Cross-section view of PB model dynamics for a generalized interior cell

b. Cross-section view of AA and CP model dynamics for a generalized interior marsh compartment
Mass Transfer
System Quality
System Quality
System Quality
Calibration and Validation

<table>
<thead>
<tr>
<th>Model</th>
<th>Calibration Year(s)</th>
<th>Validation Year(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PB</td>
<td>1990 - 2009</td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td>2007</td>
<td>2008 - 2009</td>
</tr>
<tr>
<td>CP</td>
<td>2007</td>
<td>2010</td>
</tr>
</tbody>
</table>
Calibration and Validation
Calibration and Validation

- Stage (m NAVD88)

- Date

- Observed: USGS 8017118

- Modeled: CP011
Project Types

- Marsh Creation
- Hydrologic Restoration
- Diversion
- Channel Re-alignment
- Ridge Restoration
- Barrier Island Restoration
- Oyster Reef Development
- Hurricane Protection
Simulations

First 25 Years

- Eco-hydrology
- Stage, Salinity
- Vegetation
- Stage, Salinity
- Barrier Shoreline Morphology
- Stage
- Wetland Morphology
- Land Configuration, Elevation

Second 25 Years

- Stage, Salinity, Sediment
- Eco-hydrology
- Stage, Salinity
- HVAC Configuration
- Elevation
- Stage
- Stage, Salinity, Sediment
Output from Wetland Morphology
Output from Wetland Morphology
Output from Wetland Morphology
Master Plan

Primary Concerns

• PB region – Sediment Accretion
• AA region – Salinity and Sediment Accretion
• CP region – Salinity
PB Results - Cumulative Accretion over 50 years

Future Without Action
Less Optimistic Scenario

Master Plan
Less Optimistic Scenario

Compartment receiving diverted flow
AA Results - Average Annual Salinity for 2nd 25 years

Future Without Action
Less Optimistic Scenario

Master Plan
Less Optimistic Scenario
AA Results - Cumulative Accretion over 50 years

Future Without Action
Less Optimistic Scenario

Master Plan
Less Optimistic Scenario
CP Results - Monthly Averaged Salinity

October 2030
Less Optimistic Scenario

Future Without Action

Master Plan

January 2051
Less Optimistic Scenario

Future Without Action

Master Plan
• Eco-Hydrology group designed computationally efficient tools/models for the Louisiana Coast

• Models functioned as a component of integrated analysis approach

• A 50-year analysis was performed with a full landscape update at year-25

• Eco-Hydrology models provide assessment of relative project effects on the ecosystem hydrology

For more information on these models, please visit the Master Plan website: http://www.coastalmasterplan.louisiana.gov/2012-master-plan/draft-2012-master-plan/
Thank You!