Trophic Status and Methanogenesis in Peatlands

Mark E. Hines
University of Massachusetts Lowell

Jeff P. Chanton
Florida State University

Edward A.D. Mitchell
Université de Neuchâtel, Switzerland
Path of CH$_4$ Formation

Polymers

Monomers

- **Fermentation**

- **Other LMW acids/alcohols**

- **Acetate**

- **H$_2$ + CO$_2$**

- **Acetogenesis**

- **Terminal step**

Acetate

CO$_2$, CH$_4$

Terminal step

2o Fermentation Acetogenesis
Which Pathway Matters?

In typical anaerobic systems e.g., freshwater and marine muds, sewage sludge, intestinal tracts

2/3 of CH$_4$ is derived from acetate

1/3 from H$_2$/CO$_2$

Ideal conditions: Ratio of CO$_2$:CH$_4$ = ~1

In some marine systems, C-one compounds can be quite important
Turnover of *in situ* Intermediates

Typical
Monomer \rightarrow acetate \xrightarrow{X} CO$_2$ + CH$_4$

Uncoupled
Monomer \rightarrow acetate \xrightarrow{X} CO$_2$ + CH$_4$

Inhibition
Trophic Status Affects Pathway

acetate \rightarrow CO$_2$ + CH$_4$

acetate \times

Bog

Acetate (µM)

0 2 4 6 8 10

CH$_4$ (µM)

0 0.25 0.50 0.75 1.00

CO$_2$ (µM)

0 40 80 120

Days

Days

Poor Fen

Acetate-C:CH$_4$ ~1000:1

Rich Fen

acetate \rightarrow CO$_2$ + CH$_4$

1,300

700

250

50

1.25

160

200
Questions

- How ubiquitous?
- Are acetotrophs not present, or not active?
- Does it vary seasonally?
- What happens with alternate electron acceptors?
- What about other organic acids (or alcohols)?
- How might climate change affect decomposition path?
- Is elevation a surrogate for latitude?
- Do other compounds behave like acetate?
Alaskan Study Sites

Grouped sites by trophic status (vegetation cover)
CH$_4$ production increases with trophic status, but total C flow does not vary greatly (acetate remains important)
Stable C Isotopes and CH$_4$ Production Path

Sphagnum → Carex

Vegetation Class
- Poor Fen
- Intermed.
- Rich Fen

\[\alpha = \frac{\delta^{13}\text{CO}_2 + 1000}{\delta^{13}\text{CH}_4 + 1000} \]
Temperature Affects Pathway

Temperature increases CH$_4$ and CO$_2$, but acetate production is highest at low temperature.

Incubation temperature similar to in situ temperature

$p < 0.05$
Questions

• How ubiquitous?
• Are acetotrophs not present, or not active?
• Does it vary seasonally?
• What happens with alternate electron acceptors?
• What about other organic acids (or alcohols)?
• How might climate change affect decomposition path?
• Is elevation a surrogate for latitude?
• Do other compounds behave like acetate?
Questions

• How ubiquitous?
• Are acetotrophs not present, or not active?
• Does it vary seasonally?
• What happens with alternate electron acceptors?
• What about other organic acids (or alcohols)?
• How might climate change affect decomposition path?
• Is elevation a surrogate for latitude?
• Do other compounds behave like acetate?
In Temperate Bogs, Acetate Becomes a Source of CH$_4$ After a Spring Lag (“Acetotrophic Switch”)
Acetate in Bog Pore Water at Turnagain Bog

Depth (cm) vs. Acetate (µM)

Peat Surface and Water Table

MONTHS: JUNE, JULY, AUGUST, SEPTEMBER
Controlled by hydrology without a temporal shift
Questions

• How ubiquitous?
• Are acetotrophs not present, or not active?
• Does it vary seasonally?
• What happens with alternate electron acceptors?
• What about other organic acids (or alcohols)?
• How might climate change affect decomposition path?
• Is elevation a surrogate for latitude?
• Do other compounds behave like acetate?
What About Other Terminal Electron Acceptors?

Polymers

Monomers

Fermentation

H₂ + CO₂

Acetogenesis

Acetate

Other LMW acids/alcohols

Acetate

H₂ + CO₂

NO₃⁻, Fe(III), SO₄²⁻

CO₂

Terminal step
What happens to acetate that is produced in anaerobic environments?

Acetate is consumed by all other processes (Uncoupling only during CH$_4$ production)

Acetate C destined for CH$_4$ in methanogenic habitats is converted to CO$_2$
Questions

- How ubiquitous?
- Are acetotrophs not present, or not active?
- Does it vary seasonally?
- What happens with alternate electron acceptors?
- What about other organic acids (or alcohols)?
- How might climate change affect decomposition path?
- Is elevation a surrogate for latitude?
- Do other compounds behave like acetate?
Polymers

Monomers

Fermentation

Other LMW acids/alcohols

$H_2 + CO_2$

Acetogenesis

Acetate

Terminal step

CO_2, CH_4

Terminal step

What About Other Organic Acids?
Other Organic Acids

Propionate \rightarrow Acetate + CO$_2$ + H$_2$

Butyrate \rightarrow 2 Acetate + 2 H$_2$
Questions

• How ubiquitous?
• Are acetotrophs not present, or not active?
• Does it vary seasonally?
• What happens with alternate electron acceptors?
• What about other organic acids (or alcohols)?
• How might climate change affect decomposition path?
• Is elevation a surrogate for latitude?
• Do other compounds behave like acetate?
Replacement of mosses by vascular plants may lead to severe increases in CH$_4$ production

“Sites with small increases in sedges use much more acetate”
Questions

• How ubiquitous?
• Are acetotrophs not present, or not active?
• Does it vary seasonally?
• What happens with alternate electron acceptors?
• What about other organic acids (or alcohols)?
• How might climate change affect decomposition path?
• Is elevation a surrogate for latitude?
• Do other compounds behave like acetate?
In Temperate Bogs, Acetate Becomes a Source of CH₄ After a Spring Lag ("Acetotrophic Switch")

Since higher latitude sites often accumulate acetate all season, this suggests that temperature may influence whether a shift occurs and when
Poor fen at 1000 m experienced an acetotrophic shift in May, but at ~1900 m, this had not occurred, even in September.
Questions

• How ubiquitous?
• Are acetotrophs not present, or not active?
• Does it vary seasonally?
• What happens with alternate electron acceptors?
• What about other organic acids (or alcohols)?
• How might climate change affect decomposition path?
• Is elevation a surrogate for latitude?
• Do other compounds behave like acetate?
Uncoupling of Methanogenesis Affects Other Compounds

1° & 2° Fermentation, Acetogenesis

- Pectin
 - Methanol
- S Methylation
 - DMS
- Hg Methylation
 - MeHg

- Acetate
- CO₂, CH₄
Implications

- The uncoupling of methanogenesis is a common phenomenon in the north that is linked to trophic status and temperature.
- Temperature seems to create a latitude and elevation gradient, in which seasonal effects observed in temperate bogs are postponed, sometimes indefinitely, as active seasons become colder and shorter.
- Uncoupling only occurs during methanogenesis, i.e., intermediates are consumed during respiration of other electron acceptors.
- Compounds similar to acetate are also not degraded to methane.
- Uncoupling appears to be an inhibition in which acetate use is more sensitive than CO_2 reduction.
Implications, con’t

- Local consequences of uncoupling of decomposition:
 1) enhanced importance of fermentation and acetogenesis; 2) C flow to acetate that is degraded to CO$_2$ (fuels stream and other bacteria); 3) unique microbial population; 4) “recycling of C to mosses”

- Global consequences of decoupling:
 1) slight increases in vascular plants (sedges) may lead to sharp increases in methane formation

- Worst case scenario: Climate warming leads to methanogenic use of acetate at current production rates (temp alone: $2^\circ \uparrow \rightarrow \sim 15\% \uparrow$; path change: 100x)
Acknowledgements

Ronald Kiene - University of S. Alabama
Isaac Adatto - UMass Lowell
A.J. Dancoe - UMass Lowell
Andrea Lynch - UMass Lowell
Monica Kinney - University of Alaska
Ted Stets - University of S. Alabama/Univ. Minnesota

Funding

NSF – Polar Programs, Ecosystems Studies, and Biocomplexity