Incorporating Carbon Management for Climate Change Mitigation into Coastal Management Planning

Richard F. Ambrose
University of California, Los Angeles

Stephen Crooks
ESA PWA
Managing carbon

• Why you would want to manage carbon?
• How can you manage carbon?
 – Protect existing stocks (avoided emissions)
 – Create or restore stocks (carbon sequestration)
 • Wetland creation or restoration
 • Manage habitat to enhance carbon stocks
 – E.g., adjust tide gates to flood more but still use for agriculture

Many Blue Carbon projects will occur on the coast
Coastal management issues

- High demand on coastal habitats and resources
 - More than half of U.S. population lives within 50 miles of the coast

- Multiple conflicting uses
 - Economic activities (58% of U.S. GDP): commercial and recreational fishing, transportation, energy production, tourism
 - Ecosystem protection

- Coastal habitats threatened by climate change

Source: http://stateofthecoast.noaa.gov/
How coastal managers think

• Primarily **project-based** planning
• **Sector-based** (largely along the lines of agency mandates)
 – Fisheries, transportation, recreation/tourism, land use, energy production, endangered species
• Short-comings recognized, evolving towards more integrated planning
 – Integrated Coastal Zone Management
 – Ecosystem-based management
 – Coastal and marine spatial planning

http://www.oceanconservancy.org/our-work/marine-spatial-planning/
How coastal managers think:
Climate change issues

• Planning approach to climate change has focused on **adaptation** or ensuring resilience to **sea level rise**
 – Hold the line (coastal squeeze unless add sediment)
 – Managed retreat (create space, remove infrastructure, restore)
 – Managed advance (sediment management)
 – Integration with flood management
 – Supporting ecology
 – Reducing social vulnerability

• Greenhouse gas mitigation generally not considered

Areas around San Francisco Bay inundated or vulnerable to inundation under 100-year high-water levels for present-day (blue) and 150-cm sea level rise (red). From Knowles 2010.
How carbon managers think

• Carbon sequestration projects have to meet certain conditions
 – Real
 – Leakage
 – Quantifiable
 – Verifiable
 – Additional
 – Permanence
 – Unambiguous ownership
 – Not harmful
 – Practicality
How carbon managers think

• Carbon sequestration projects have to meet certain conditions
 – Real
 – **Leakage**
 – Quantifiable
 – Verifiable
 – Additional
 – **Permanence**
 – Unambiguous ownership
 – Not harmful
 – Practicality

"The unanticipated decrease or increase in greenhouse gas (GHG) benefits outside of the project's accounting boundary as a result of project activities."

Example: Project to protect forest, but logging simply displaced to an area outside the protected (project) area.
Planning for carbon requires a larger planning scale – temporal and spatial

• Leakage
 – Need to use a regional or larger spatial scale of planning

• Permanence
 – Planning time frame on the order of 100 years (compared to typical 10-year time frame)
 – Need to accommodate sea level rise
Planning for carbon can reinforce good planning practices

• Need to maintain a long-term carbon store
 – Buffers, which would allow wetlands to continue to sequester carbon by tracking sea level rise
 – Important to maintain supply of sediments to wetlands

• Requires a larger planning spatial scale
 – Consistent with an ecosystem-based management approach
 – **Coastal and Marine Spatial Planning** could help ensure a balance with different uses, including natural ecological functions
Planning for carbon management could conflict with other coastal uses

• There can be a conflict between planning for permanent carbon stores (100 years) versus short-term ecological benefits
 – May need to incorporate more high-elevation habitat to accommodate future sea level rise
 – May emphasize long-term development of wetland over immediate needs of endangered species

• Carbon management projects could preclude other uses for a very long time
Carbon management will introduce new trade-offs

• Could lead to a trade-off between carbon sequestration and other ecological values (e.g., endangered species) or ecosystem services in a wetland.

• Could alter decisions about systems with different resiliencies
 – Do we put resources into the sensitive system, which we are likely to lose (but has high current value)?
 – Example: Salinas River (resilient) vs. Elkhorn Slough (sensitive)
Resiliency due to sediment supply

Salinas River in Flood

- Marshes in high sediment areas more resilient to sea level rise
- Restoration more successful in high sediment systems
- Wetlands in low sediment systems will be lost if space is not available for transgression

Van Dyke and Wasson 2005.
Planning for carbon can support good conservation policies

• Conserving wetlands is more effective than restoring them
 – Large carbon stores in existing wetlands
 – Restoration can be expensive, and it takes time to sequester carbon

• Need to focus on policies to protect wetlands
 – Already the policy in U.S., Europe and Australia
 – Extension of REDD framework
 – Promote sustainable use of coastal habitats to reduce destruction of existing habitats
 • E.g., policies to import only sustainably farmed shrimp
Conclusions

• Coastal managers will need to incorporate carbon management projects in their planning
• Carbon management does not fit into project-specific, relatively short-term planning
 – Carbon management projects (especially sequestration) may introduce new conflicts with other
 uses and new trade-offs
• On the other hand, carbon management will reinforce modern coastal planning approaches
 (Ecosystem-Based Management, Coastal and Marine Spatial Planning)
Acknowledgments

• NCEAS Working Group:
 Coordinators: John Callaway, Steve Crooks, Pat Megonigal, Abe Doherty
 Participants: Rich Ambrose, Omar Aziz, Chris Craft, Stephen Faulkner, Jason Keller, Sian Mooney, Jim Morris, Enrique Reyes, Lisa Schile, Lisamarie Windham-Myers