Diel Phosphorus Variation and the Stoichiometry of Ecosystem Metabolism in a Spring-Fed River

Matt Cohen, Marie Kurz, Jon Martin, Rachel Douglass, Ray Thomas
University of Florida

Jim Heffernan
Duke University
Coupling of Elements: From Cells to the Biosphere

- Elements can constrain metabolism.
 - Increasing availability can lead to excess C fixation
 - Organism stoichiometry differs from supply
- Metabolic activity couples element cycles across scales
 - Ecosystem scale is of particular interest
- Coupling is direct + indirect
 - Direct autotroph assimilation
 - Indirect effects on redox, pH, heterotrophs

Gruber and Galloway 2008
“Ecology in Streams”
Streams as Model Ecosystems

- Flow creates coherent (diel) downstream signals from ecosystem metabolic processes

- **Carbon**: Diel O_2 for riverine GPP, R (Odum 1956)

- **Nitrogen**: Diel NO_3 for autotrophic N demand (Heffernan and Cohen 2010)
North Florida’s Springs as Model Rivers

• High GPP (clear water)
• Stable flow; no scouring floods
• Constant source water chemistry
• Constant temperature

• **Natural laboratory for coupled elemental cycling in ecosystems**
Coupled Carbon and Nitrogen Cycles

- **DIRECT**: Net primary production and $U_{a,N}$ are strongly correlated and yield plausible C:N

- **INDIRECT**: U_{den} is correlated with R and previous days’ GPP (short and long term coupling)
Research Questions: Coupled Carbon and Phosphorus Cycles

• Is there a coherent diel SRP signal?

• Is the diel signal controlled by metabolic processes?
 – Directly via autotrophic assimilation?
 – Indirectly via pH or redox sensitive geochemical reactions (e.g., Ca, Fe)?

• What is the stoichiometry (C:N:P) of ecosystem metabolism and how does it vary?
 – Does it indicate the dominant autotrophs?
 – Does it change at daily and seasonal time-scales?
Conceptual Model of Diel P Dynamics

- Assumes all diel variation due to assimilation.
- No P uptake at diel maximum.
- Assumes diel variation due to assimilation and calcite co-precipitation.
- Assumes in-phase P removal mechanisms.
- Extracts P removal due to assimilation and co-precipitation which produce signals that are out of phase.

Graph:
- Assimilation (green)
- Calcite (gray)
- FW Input (dashed line)

Time (h):
- 0:00, 6:00, 12:00, 18:00
Site

- Ichetucknee River
 - High Flow ~ 6 - 9 m³/s
 - Constant input chemistry
 - FW NO₃ ~ 620 ppb, PO₄ ~ 48 ppb
 - High GPP (5 ± 2 g C m⁻² d⁻¹)

- 8 deployments, 5-12 days
 - Sensors at South Take Out, 5 km from Ichetucknee Headspring

Sensors

- C fluxes + calcite dynamics
 - YSI 6920, Optical DO, SpC

- N fluxes from nitrate
 - Satlantic SUNA (UV NO3)

- P fluxes from phosphate
 - Wetlabs Cycle-PO4
Geochemical Interactions

- Diel S_{cal} responds to GPP
 - Day: Precipitation, Night: nothing
- No other significant geochemical sinks

- $[\text{Ca}]$ well predicted by specific conductance (SpC)
- Calcite co-precipitation kinetics from House (1990)
Raw Data (March 2011)
Unexpected Timing of P Dynamics

- NITRATE
- SRP
- [Ca]
- SRP uncorrected
- SRP corrected
P Assimilation vs. GPP

Uncorrected - C:P ~ 945:1

Corrected - C:P ~ 466:1

\[U_{\text{a-raw},P} = 0.60 \times \text{GPP} - 0.59 \]
\[R^2 = 0.53 \]

\[U_{\text{a-cor},P} = 1.20 \times \text{GPP} - 1.06 \]
\[R^2 = 0.84 \]

C:P\text{_vascular} \sim 480:1
C:P\text{_algae} \sim 430:1
P Removal in Context

• Uptake dominates removal
 – Biotic removal ~ 70%
 – Co-precipitation ~ 30%
 (exported as calcite particles?)

• Spiraling metrics indicate huge supply vs. demand
 – Uptake length ~ 42 km
 – Matches 5th order river spiraling (Ensign & Doyle 2006)
 – Zeroth order removal?

Ichetucknee is a NET SOURCE of P
A Phosphorus Source?

- Magnitude inferred from varying [SRP] baseline
- Baseline covaries with respiration and flow
 - Redox sensitivity? Hydraulic gradient?
- Interstitial porewater has high SRP (ca. 150 ppb)
 - H1: [SRP] varies with R
 - H2: P flux varies with hydraulic gradient

\[
\Delta [\text{SRP}]_{\text{max, cor}} = -1.51 \times \text{ER} + 22.6 \\
R^2 = 0.71
\]

\[
\Delta [\text{SRP}]_{\text{max, cor}} = -4.10 \times Q + 39.9 \\
R^2 = 0.75
\]
Predicting Diffuse Flow: Evidence from P Mass Balance

- Assuming porewater [SRP] (150 ppb), what is diffuse lateral flow to close river P budget?
- Strong f(flow), declining inputs at high stage
- Matches [Cl] budgeting
 - 0.6 m3 s$^{-1}$ (de Montety et al. 2011)
Ecosystem C:P Stoichiometry

Plausible mixture

Weak phenology

Graphs showing molar C:P ratios for ecosystem, algae, and vascular plants, as well as a scatter plot correlating C:P ratios with gross primary production (g O₂ m⁻² d⁻¹). The equation for the regression line is C:P = -8.65 * GPP + 569, with R² = 0.19.
P Assimilation LAGS Primary Production

• H: Ribosome production occurs when cell energy stores are maximum
 – Ribosomes dominate P demand (Falkowski 2000, Elser and Sterner 2002)
 – Literature evidence that rRNA maximum is at midnight (Paul et al. 1988)
 – H_1: Diel rRNA:DNA variation with peak at maximum P removal
Summary:

Ecosystem Scale C and P Coupling

• Coherent diel [SRP] signal, varying amplitude
• Signal is convolution of 2 out-of-phase processes
 – Calcite co-precipitation (ca. 30% of removal)
 – Biotic assimilation (ca. 70% of removal)
 – Combined removal < 10% of total P flux
• Calcite-corrected removal yields plausible C:P
• Discrete springs are NOT the only source of P
 – Lateral seepage flux controlled by R_{eco} and hydraulics
• P assimilation lags GPP by ca. 8 hours
 – Signal from the cell to the ecosystem?
Thank You.
mjc@ufl.edu

Acknowledgements:
Larry Korhnak, Ginger Morgan, Rob Mattson and Erich Marzolf

Funding:
NSF EAR-0838369/EAR-0609968, Three Rivers Trust, SJRWMD #25941