Equitable Water Rights Allocation: A holistic perspective on eco-cultural restoration to sustain biodiversity, ecosystem functions and social justice in the Tigris Euphrates Watershed

Dr. Michelle Stevens
Executive Director
Hima Mesopotamia
stevensm@csus.edu

www.hima-mesopotamia.org
Figure 1. Map of Tigris Euphrates River System, including country boundaries and elevation.
Outline of talk

I. World Congress for Middle Eastern Studies, Barcelona, Spain 2010 and formation of Hima Mesopotamia

II. Technical, legal and regional barriers to successful water cooperation in Tigris Euphrates basin

III. Climate Change data for the watershed

IV. Recent dam construction developments in Turkey

V. Conditions of biodiversity and human welfare in lower watershed
Hima Mesopotamia

Our Vision:

The restoration and maintenance of the ecology and cultural heritage of the Tigris Euphrates watershed

Translation: Protection of the land between two rivers

World Congress for Middle Eastern Studies
Barcelona, Spain 2010
Hima’s Mission: To nurture the eco-cultural heritage of the Tigris-Euphrates watershed through

- Outreach, coordination and capacity building.
- Synthesis of scientific information, traditional and local knowledge.
- Providing a forum for cultural and environmental information exchange between individuals, local, national, and international groups via art, media, public speaking and scientific conferences.
1. No binding water agreements – Turkey, Syria, Iraq, Iran, Kuwait

2. Climate Change = less available water downstream

3. Turkey plans to build 1,783 dams and hydro-electric power plants (HEPP) by 2023 in addition to over 2,000 existing facilities, which may affect up to two million people

4. Major dams on Tigris River (Ilusu Dam) underway

5. “The continuing water crisis has directly contributed to rising levels of food deprivation, displacement and poverty in Iraq” – UNESCO, 2011
Conflict over water rights

- Arab countries have accused Turkey of violating international water laws – Euphrates River
- Iraq and Syria consider river to be international watercourse – an integrated entity for all riparian users
- Turkey regards Euphrates as a transboundary river, under Turkey’s exclusive sovereignty until it flows across the border
- Agreement between Turkey and Syria for minimum flow of 500 m³/sec throughout the year
Flint et al, 1011, USGS, A Preliminary Water Balance Model for the Tigris and Euphrates River System

Figure 2. Map of Tigris Euphrates River System (TERS), study area boundary, major river basins and subbasins, calibration basins, and unimpaired streamflow gages.
Climate

- Average annual precipitation ranges from 50 mm/year in the south to over 1,000 mm/year in higher elevations, with most of the annual rainfall occurring between November and April.

- Potential evapotranspiration ranges from 800-1,400 mm/year, with little to no precipitation in June, July and August.

- Because of high rates of evapotranspiration, agricultural crops could not survive without extensive irrigation.
Figure 5. Map of annual potential evapotranspiration for the Tigris Euphrates River System (USGS Early Warning and Environmental Monitoring Program; http://earlywarning.usgs.gov/fews/middleeast/index.php).

(Flint et al, 1011, USGS, A Preliminary Water Balance Model for the Tigris and Euphrates River System)
Precipitation and Recharge

- The majority of precipitation falls in the Tigris River basin, over twice that of the Euphrates River basin, yet the Euphrates has the most loss to potential evapo-transpiration.

- Tigris River also receives the most snowfall and results in about 30 percent more recharge and 3 times more runoff than the Euphrates.

- The majority of precipitation and resulting recharge and runoff are in Turkey (Flint et al, 1011, USGS, A Preliminary Water Balance Model for the Tigris and Euphrates River System)
Climate Change in the Tigris Euphrates River System

- Difficult to simulate climate change due to high natural inter-annual variability in flows
- High variability in projections of precipitation
- Significant challenges to region’s agricultural base, with a longer dry season and changes in timing of rainfall
- Local weather changes are unpredictable, with more frequent and more severe storm events
Climate Trend 1949-1999

1. Downward trend in precipitation for both basins
2. Increases in potential evapotranspiration and air temperature
3. Decline of snowfall over 50-yr period Trends of declining water availability more evident since the 1980s
4. Impact on local climate from marsh drainage is much more significant, rising temperatures and reduced water availability
Annual Discharge on the Tigris River

Discharge, in cubic meters per second

Year

(Published in Saleh 2010)
Annual Discharge on the Euphrates River

Discharge, in cubic meters per second

Year

(Published in Saleh 2010)
Declining Inflows

Mean annual discharge in the Euphrates (m3/s)
1975-2005

Trend Line
Filling of Ataturk Dam
Dams in the Tigris Euphrates River Basins
Mesopotamia – Ataturk Dam Euphrates River
2010 Journey to Turkey

- Over 1,000 dams now proposed in Turkey – big push for hydro-electric development to reduce Greenhouse Gas emissions to join European Union

- Major economic upswing with funding for dam development in Anatolian Region
Dr. Stevens met Turkish non profit Doga Dernegi in Istanbul in 2010:
They facilitated travel and research to the Tigris and Euphrates Rivers in southeaster Anatolia
Drowned City of Helfiti
Euphrates River
Problems with Dam Construction and Operation

- Dams have no mechanism to provide fish passage or to bypass water to maintain in-stream flows for habitat.
- Rivers are completely dewatered for 2-5 hours every day.
- A 3 m pulse of water then surges downriver, causing erosion and sedimentation.
- Dam operation could be changed to maintain in-stream habitat for fish and aquatic life.
Impacts of Ilusu Dam in Turkey

- 12,000 MW hydropower project planned on Tigris River in Southeast Turkey
- 78,000 people impacted in Turkey
- 313 km² reservoir will inundate habitat of numerous species, 300 archaeological sites, and the 12,000 year old town of Hasenkeyf
- 400 km of riverine ecosystem
- Manzur Valley in Eastern Turkey is protected nature reserve hosting 1,528 plant species out of which 227 are endemic to Turkey and 55 to the Munzur valley
- **Impacts are estimates – no environmental assessment**
Ilusu Dam on Tigris River
Tigris River at Hasenkeyf
The Marshes

The Marshlands of Mesopotamia, considered by some to be the Biblical location of the Garden of Eden, are disappearing at an alarming rate.
Ecocide and Genocide
Saddam Hussein - Baathist Regime

[Maps showing changes in lake and marsh areas from 1973 to 2005]
2011 Marsh Aerial Survey
What had been the third largest wetland in the world just 10 years before

Reduced to just five percent of its original size,

Purposely destroyed by Saddam Hussein’s regime in the 1990s in retaliation for the Shiite uprising that followed the Gulf War in 1991.
2008 Drought (ongoing)

- In 2008 Tigris and Euphrates Rivers experienced a severe drought;
- Dam construction in Iran, Turkey – Euphrates and Tigris Rivers (also act of violence against Kurds)
- Predicted Trajectory for Climate Change ↔ ↑ drought stress, ↑ evapotranspiration, ↓ water quantity and quality = a salt encrusted wasteland
- Conflicts among riparian water users
- No international vehicle to effectively mediate or enforce equitable water allocation
Marsh Arab settlements prior to the drying out of the wetlands

Systematic destruction of the way of life
Al-Malha – village in the marshes
(Information from Dr. Nadia Fawzi, 2011)

- Population
 - About 400-500 households, as the chief of the tribe said “we don’t have a piece of paper to prove we own the land, but our blood and sweet is mixed in this land”
 - Surrounded by oil fields

Information from Dr. Nadia Fawzi, 2011
Known Major Archaeological Sites in Southern Iraq & Oil Fields. From The Oriental Institute (Iraqi Foundation, 2003)

ARCHEOLOGICAL RESOURCES

Oil Fields in and around the Marshes

AMAR, 2003
The North-Western Arabian Gulf
The Shatt Al-Arab
Environmental Changes in Basrah’s waterways

- Drainage of the al Ahwar Marshes.
- Diversion of the Karkehi River, Iran → drainage of Haweizeh Marshes
- Decline in water discharge of the Tigris – Euphrates basin
- Impaired water quality from salt water intrusion, untreated sewage, and agricultural drainage directly into the water ways.
- Susceptibility to climate change
Salinity increases at the lower reaches of the Tigris Euphrates.

Salinity along the Euphrates prior to 1973 and after 1980.
Marsh desiccation caused:

- Increased the mean annual air temperature by 1 C°
- Increased mean wind velocity by 1 m/sec.,
- Increased annual dust storm by 15 days
- Increased annual evaporation by 317 mm.
- Decreased mean annual relative humidity by 2.5 %

(Mohammed and Gatie, 2008)
Recommendations

1 - Efforts should be intensified with Iran, Turkey and Syria, to release enough water to sustain life throughout the Tigris Euphrates watershed

2 – Provide basin wide environmental and social impact assessment

3 – Operate and manage dam and HEPP projects to sustain fish passage and bypass flows for fish and aquatic life

4 - People are suffering from dam construction and operation activities in the drainage. Tell the stories of the people impacted by these projects.

5 - Mitigate for and minimize impacts of water projects on people and ecosystems

6 - Adequate water must be maintained to
 a. protect biodiversity and ecosystem services,
 b. conserve rare species,
 c. maintain socioeconomic quality of life for people in the watershed
Shokran Jazailan

- Thank you so much.
- Please contact me at Michelle Stevens, stevensm@csus.edu. I would love to talk to you.
- www.iraqmarshrestoration.blogspot.org
- www.hima-mesopotamia.org
References Cited

