Fire Effects on River Cane (*Arundinaria gigantea*) in a Bottomland Hardwood Forest Four Years After Burning

Paul R. Gagnon & Heather A. Passmore

Pecano Plantation circa 1905 near present-day Waterproof, LA in Tensas Parish; USDA photo negative
Acknowledgements:

Collaborators:
Bill Platt
Kyle Harms
Bruce Williamson
Sammy King
Jim Cronin
Kevin Robertson
Tim Paine
Jane Carlson
Kenny Ribbeck
Tommy Tuma

Funding Agencies:
US EPA STAR Fellowship Program
Louisiana Board of Regents
American Bamboo Society
J. B. Johnston Science Foundation
Sigma Xi Grants-in-Aid of Research

Collaborating Agencies:
Louisiana Department of Wildlife and Fisheries
River Cane or Giant Cane

One genus, 3 species (*Arundinaria gigantea* Muhl.)

Giant grass with perennial culms (stems)

“Running bamboo” with spreading clonal growth

Grew in vast monodominant stands called “canebrakes”

Early naturalists (e.g., Bartram, Nutall, Audubon) frequently described expansive canebrakes

Canebrakes reduced by 98%

What happened?

Altered disturbance regime?
Southeastern Coastal Plain
Multiple interacting disturbances on the coastal plain

- Floods
- Space-opening disturbances
- Space-opening disturbances
- Space-opening disturbances
- Cyclical droughts with ENSOs, every 3-7 years
- Abundant ignition sources

Map by Vaisala-GAI
Fire – Ecological and Evolutionary Force?

Fire in Ecological Context (Lentz 1931, Kaufert 1933)

- Fire possible, especially in large gaps during droughts
- Fires several years after initial disturbance event
- Fires in late winter or spring (early lightning season)
- Interval between fire years: 5-13 years

Gagnon 2009, *Wetlands*

Gagnon 2009, *Society of Wetland Scientists Research Brief*
Cane life history and clonal biology

- genet/ramet
- rhizome/culm
- node/internodes/branching
Range of Arundinaria

Study site

Buckhorn Wildlife Management Area

Judziewicz, et al. 1999
Basic questions: How do interacting disturbances influence
- demography of a potentially dominant clonal plant?
- boundary between ecological communities?

Applied question: Cane still widespread throughout range
- why no more canebrakes today?
Experimental design – windstorm & fire

Habitat type – 10 plots in each
- *forest* (small forest stands)
- *blowdown* caused by windstorm
- *canebrake* (large forest stands)

Tagged and tracked every individual culm (ramet)

Fire – 5 of each plot type burned

[Diagram showing timeline with census points and fire event.]
Light regime

Gagnon et al. 2007, *Forest Ecology and Management*
Cane burns explosively...

...and resprouts vigorously
4 years post-fire

Habitat Type
$P = 0.002$

Fire Treatment
$P = 0.019$

mean +/- 1 SE
4 years post-fire

Unburned Forest

N branchings

proportion

0.0 0.2 0.4 0.6
4 years post-fire

![Bar chart showing proportion of damaged areas by habitat type.](image)

- Forest: Proportion Damaged = 0.40 ± 0.05
- Blowdown: Proportion Damaged = 0.15 ± 0.03
- Canebrake: Proportion Damaged = 0.35 ± 0.04

P = 0.001

mean +/- 1 SE
Clonal growth in small canopy gap

Fire

1. Low probability
2. Could open canopy
3. Initial cane decline
4. Eventual higher density
Prolonged clonal growth under forest canopy (canebrake)

1. Very unlikely
2. Outcome dependent on canopy damage
Fire
1. Much more likely
2. More canopy damage
3. Accelerate clonal growth
Fire in Modern BLH Forests – Inconceivable?

• Modern BLH forests virtually fireproof – dense canopies shade understory and minimize plant growth

• Decades of fire suppression in the Southeast

• Fires no longer travel across landscape from adjacent pine savannas and flatwoods

• Canebrakes no longer conduits for fire spread in forests

Gagnon 2009, *Wetlands*
Fire – Ecological and Evolutionary Force?

Natural fire scenario:

1) Powerful windstorm creates large gap

2) Dense vegetation fills gap over a few years

3) Prolonged drought dries fuels and natural fire breaks

4) Lightning strikes with onset of spring storms

5) Canebrakes, any adjoining uplands facilitate fire spread

6) River cane thrives after burning – fuel bed for next drought

Gagnon 2009, *Wetlands*
Results – clonal spread

- Radial expansion not different
- Always expanding
- Mean radial expansion: 1.77 m/year ± 0.78

Gagnon et al. 2007, Forest Ecology and Management
Culm dynamics pre-fire

Stage Distribution
- Forest older
- Blowdown younger
- Canebrake similar to forest

\[P = 0.006 \]

Gagnon et al. 2007, *Forest Ecology and Management*
Population growth rate:
\[\lambda = \frac{(N_{t+3})}{N_t} \]

Population stasis $\rightarrow \lambda = 1$

growth $\rightarrow \lambda > 1$

decline $\rightarrow \lambda < 1$

mean +/- 95% bootstrapped CI

P-values generated by randomization tests

Ramet population densities over 4 years

Fire During Recent Past

“Although foresters and timbermen generally discount the fire problem in the southern hardwoods, a real problem exists…The past summer, 1930, was decidedly dry and followed by a fall and winter also quite dry. Many sloughs and brakes usually filled with water have been dry for several months. The spring rains have not been able to wet down the litter and debris and conditions in the woods are just right for fires to spread.”

In 3 year-old clearcut “a fire was burning over a large portion of the cut-over area. This fire was so hot that most of the advanced reproduction was killed and larger residual trees were partly killed by the flames. Fires of a similar nature were burning in other cut-over hardwood stands in the region.”

- Studied > 500 stumps on 3 clearcut hardwood tracts in LA.
- Fires common during a dry spring following a dry fall.
- Traced individual fires “back to Civil War days and farther,”
- Major fire years in 1898-1899, 1911-1912, 1916-1917, 1924-1925 and 1930-1931 (approximately every 5-13 years).
- Attributes fires to human activity. Pyrogenic power of lightning underestimated at the time.
- “Much of the evidence of these early fires has been obliterated. According to the ‘old-timers,’ however, they were more damaging than present fires, for dry cane made an excellent fuel.”
Canebrake ???

Crotalus horridus subsp. *atricaudatus*