Use of the Prevalence Index to Determine Plant Community Trends Related to Groundwater Withdrawal Lower Platte River, Nebraska

Sarah Soard, PWS
Burns & McDonnell

Justin Bailey, PWS
Burns & McDonnell

Mike Gilbert
USACE – Omaha

Kevin Tobin, PE
Metropolitan Utilities District

SWS Annual Meeting • June 5, 2012
The Project

- Platte West Water Production Facilities Project
- 2 types of wetland impacts:
 - Direct - construction of treatment plant and facilities
 - Indirect - drawdown of local water table during Project operation
- 14.6 acres of wetland impacts estimated in the 2002 EIS (direct and indirect)
Section 404 Permit

- Section 404 Individual Permit
 - Issued May 2003
 - Over 80 conditions included

- Permit Condition 37 states:
 - “Identify any changes (e.g., change in volume, surface area, depth of ponds and functions) in the existing or future wetlands or aquatic sites impacted as the result of project development and operation.”
• Multi-scale, multi-temporal monitoring plan developed

• The monitoring plan states that monitoring is to occur two times per year until:
 “the Corps determines that any impacts to wetlands...are not likely to occur or that long-term wetland monitoring should be either decreased, increased, or stopped.”
• Baseline Monitoring – document the range of natural variation in the wetlands

• Operational Monitoring – attempt to identify indirect impacts to wetlands due to project operation
Monitoring Approach

- Systematic, multi-tiered monitoring approach
- Corollary data
- Sampling regime
- Vegetation:
 - key to monitoring approach
Data Collection

- Sample Plots (5 per gradsect)
- Gradsects (2-7 per transect)
- Transects (3 per wetland)
Data Collection

• At each sample plot:
 – Identify all vegetation to species
 – Assign modified Daubenmire cover class value
• Cover classes vs. absolute percent cover
• Database
Vegetative Indices

- **Species Richness** – count of different spp.
- **Species Diversity** – Simpson’s Reciprocal Index
- **Mean C-Value** – measure of botanical quality
- **FQI** – combines mean C-value with total number of spp. identified
- **Prevalence Index** – indicates if the vegetation is hydrophytic
Prevalence Index

\[PI = \frac{\sum I E}{\sum I} \]

- E = ecological index (wetland indicator status)
- I = importance value (percent cover)

5: • UPL
4: • FACU
3: • FAC
2: • FACW
1: • OBL
Prevalence Index

- Provides a measure of the “wetness” of the community
- ≤ 3.0 = wetland
- Comparing PI over time can indicate trends in the wetland
Data Analysis

- An abundance of data available
- Comparisons:
 - Location-Based
 - Wetland
 - Transect
 - Gradsect
 - Temporal-Based
 - Sampling Effort
 - Year
 - Baseline/Operational
- Focus on Monitoring Goals: identify indirect impacts
Mean Baseline PI by Gradsect

Transect 1

Transect 2

Transect 3
Mean PI Over Time (W-100)

<table>
<thead>
<tr>
<th>Season</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring</td>
<td>2005</td>
</tr>
<tr>
<td>Fall</td>
<td>2005</td>
</tr>
<tr>
<td>Spring</td>
<td>2006</td>
</tr>
<tr>
<td>Fall</td>
<td>2006</td>
</tr>
<tr>
<td>Spring</td>
<td>2007</td>
</tr>
<tr>
<td>Fall</td>
<td>2007</td>
</tr>
<tr>
<td>Spring</td>
<td>2008</td>
</tr>
<tr>
<td>Fall</td>
<td>2008</td>
</tr>
<tr>
<td>Spring</td>
<td>2009</td>
</tr>
<tr>
<td>Fall</td>
<td>2009</td>
</tr>
<tr>
<td>Spring</td>
<td>2010</td>
</tr>
<tr>
<td>Fall</td>
<td>2010</td>
</tr>
<tr>
<td>Spring</td>
<td>2011</td>
</tr>
</tbody>
</table>
Mean PI Over Time (W-100)

Pre-Operation Baseline Data

<table>
<thead>
<tr>
<th>Year</th>
<th>Season</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>Spring</td>
</tr>
<tr>
<td>2005</td>
<td>Fall</td>
</tr>
<tr>
<td>2006</td>
<td>Spring</td>
</tr>
<tr>
<td>2006</td>
<td>Fall</td>
</tr>
<tr>
<td>2007</td>
<td>Spring</td>
</tr>
<tr>
<td>2007</td>
<td>Fall</td>
</tr>
<tr>
<td>2008</td>
<td>Spring</td>
</tr>
<tr>
<td>2008</td>
<td>Fall</td>
</tr>
<tr>
<td>2009</td>
<td>Spring</td>
</tr>
<tr>
<td>2009</td>
<td>Fall</td>
</tr>
<tr>
<td>2010</td>
<td>Spring</td>
</tr>
<tr>
<td>2010</td>
<td>Fall</td>
</tr>
<tr>
<td>2011</td>
<td>Spring</td>
</tr>
</tbody>
</table>
Mean PI Compared to Baseline

Maximum Baseline PI = 2.96
Mean Baseline PI = 2.44

Fall 08: 1.77
Spring 09: 1.83
Fall 09: 1.99
Spring 10: 2.07
Fall 10: 2.81
Spring 11: 2.67
Biological Significance

• An increase above maximum baseline PI of 0.5 would be considered biologically significant

• Best Professional Opinion (at the time)

• Statistical Analysis applied in recent years
Statistical Significance

• Compare mean operational PI to mean baseline PI
• Repeated Measures ANOVA used to identify significance
• Post Hoc Analysis used to identify if a sampling effort is different from baseline average
Statistical Significance

<table>
<thead>
<tr>
<th>Post Hoc Tests</th>
<th>Mean Difference</th>
<th>T-Value</th>
<th>P - Unadjusted</th>
<th>P - Bonferroni</th>
<th>Eta Squared</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline Average and 9/2008</td>
<td>.649</td>
<td>7.940</td>
<td>.000</td>
<td>.002</td>
<td>.887</td>
</tr>
<tr>
<td>Baseline Average and 6/2009</td>
<td>.560</td>
<td>4.543</td>
<td>.003</td>
<td>.056</td>
<td>.721</td>
</tr>
<tr>
<td>Baseline Average and 9/2009</td>
<td>.369</td>
<td>2.628</td>
<td>.034</td>
<td>.715</td>
<td>.463</td>
</tr>
<tr>
<td>Baseline Average and 9/2010</td>
<td>.400</td>
<td>2.732</td>
<td>.029</td>
<td>.614</td>
<td>.483</td>
</tr>
<tr>
<td>Baseline Average and 6/2011</td>
<td>.226</td>
<td>2.292</td>
<td>.056</td>
<td>1.000</td>
<td>.396</td>
</tr>
</tbody>
</table>
• No statistically significant increases from baseline mean detected to date
• Trend analysis conducted to identify any apparent trend in PI
• Simple, linear trendline applied to PI over time
y = 0.2149x + 1.438
R² = 0.8284

PI Trend Over Time (W-100)
PI Trend Over Time (W-25)

y = 0.0954x + 1.9327

R² = 0.59
PI Trend Over Time (W-68)

\[y = -0.01x + 2.5033 \]

\[R^2 = 0.0313 \]

<table>
<thead>
<tr>
<th>Year</th>
<th>Season</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>Fall</td>
<td>2.5</td>
</tr>
<tr>
<td>2009</td>
<td>Spring</td>
<td>2.5</td>
</tr>
<tr>
<td>2009</td>
<td>Fall</td>
<td>2.5</td>
</tr>
<tr>
<td>2010</td>
<td>Spring</td>
<td>2.5</td>
</tr>
<tr>
<td>2010</td>
<td>Fall</td>
<td>2.5</td>
</tr>
<tr>
<td>2011</td>
<td>Spring</td>
<td>2.5</td>
</tr>
</tbody>
</table>
Prevalence Index

• Excellent early indicator of change over time in wetlands (trendlines)

• Corollary diagnostics needed:
 – Other veg indices/metrics of change
 – Aerial Photography
 – Hydrological Data
 – Production Well Data

• Indirect Impact or Natural Variation?
Thresholds Evaluation

<table>
<thead>
<tr>
<th>Sampling Season</th>
<th>Increase in PI by more than 0.5?</th>
<th>FQI</th>
<th>mean c-value</th>
<th>species diversity</th>
<th>species richness</th>
<th>Change visible on aerial photos?</th>
<th>Monitoring Intensity Change?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sept. 2008</td>
<td>No*</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>June 2009</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Sept. 2009</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes - Decrease to Level 1</td>
</tr>
<tr>
<td>June 2010</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Sept. 2010</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>June 2011</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes – Decrease to Level 2</td>
</tr>
</tbody>
</table>

* = A significant decrease in WAM occurred, indicating that the wetland was wetter than baseline average.
Prevalence Index

- **Use in Wetland Delineations:**
 - Provides a discrete measure of the wetness of the vegetation community

- **Sensitive to subtle changes**

- **In long-term monitoring applications, can indicate trends over time**
Contact Information:

Sarah J. Soard, PWS
Burns & McDonnell
9400 Ward Parkway
Kansas City, MO 64114
816.822.4330 • ssoard@burnsmcd.com