Multi-Scale Monitoring of Potential Groundwater Withdrawal Impacts Using Delineation Methodology; Lower Platte River, Nebraska

Justin Bailey, PWS
Burns & McDonnell

Sarah Soard, PWS
Burns & McDonnell

Mike Gilbert
USACE – Omaha

Kevin Tobin, PE
Metropolitan Utilities District

SWS Annual Meeting • June 5, 2012
Cones of Depression
Local Landscape
• Eastern Great Plains Wet-Meadow, Prairie, and Marsh
 – Common species found in the wet-meadow/prairie community include:
 • Prairie cordgrass (*Spartina pectinata*)
 • Switchgrass (*Panicum virgatum*)
 • Big bluestem (*Andropogon gerardii*)
 • Indianagrass (*Sorghastrum nutans*)

Source: Rolfsmeier and Steinauer. 2010. *Terrestrial Ecological Systems and Natural Communities of Nebraska*. Nebraska Natural Heritage Program, Nebraska Game and Parks Commission
Platte River Communities

• Eastern Great Plains Wet-Meadow, Prairie, and Marsh
 – Common species found in the wetter areas typically include:
 • Sedges (*Carex* sp.)
 • Bulrushes (*Scirpus* sp.)
 • Cattails (*Typha* sp.)
 • Blue vervain (*Verbena hastata*)
 • Hemp dogbane (*Apocynum cannabinum*)

Source: Rolfsmeier and Steinauer. 2010. *Terrestrial Ecological Systems and Natural Communities of Nebraska*. Nebraska Natural Heritage Program, Nebraska Game and Parks Commission
Project 404 Permit

- Section 404 Individual Permit Issued May 2003
 - The Permit included over 80 conditions
- 2 types of wetland impacts
 - Direct - construction treatment plant and facilities
 - Indirect - drawdown of local water table during Project operation
 - 14.6 acres of wetland impacts estimated in the EIS (direct and indirect)
Permit Conditions

• Permit Condition 37 states:
 – The purpose of the monitoring is to identify any changes in the existing or future wetlands or aquatic sites impacted as the result of project development and operation.

• Impacts due to Groundwater Withdrawal
Monitoring Goals

• The monitoring plan states that monitoring is to occur two times per year until:

 “the Corps determines that any impacts to wetlands as a result of Project operation are not likely to occur or that long-term wetland monitoring should be either decreased, increased, or stopped.”

• Impact detection through multi-scale, multi-temporal monitoring plan
Interrelationships

Vegetation Data

Prevalence Index

Species Diversity Species Richness C-Value FQI

Project Impact
• Yes or No?

Look at Other Factors
• Hydrology
• Aerial Photography

Statistical Significance
Monitoring

- Initiated in June 2005
 - Baseline Monitoring
 - June 2005 through June 2008
 - Operational Monitoring
 - August 2008 to Present
Monitoring in the Cones of Depression

- Groundwater Monitoring in the CoD:
 - Monitoring Well Data

- Surface Water Monitoring in the CoD:
 - Pond Water Level
 - Local Precipitation and Temperature Data
 - Stream Gauge

- Aerial Photography
- Vegetation (potential)
Monitoring in the Well Fields

- Groundwater Monitoring in the Well Fields:
 - Production Well Data
 - Shallow Groundwater Piezometers
- Aerial Photography
- Vegetation
Production & Monitoring Well Data

Table 1 2011 Production Well Pumping Rates, Total Million Gallons Per Day (MGD) - Douglas County Wellfield

<table>
<thead>
<tr>
<th>WELL # (PW)</th>
<th>JAN</th>
<th>FEB</th>
<th>MAR</th>
<th>APR</th>
<th>MAY</th>
<th>JUNE</th>
<th>JULY</th>
<th>AUG</th>
<th>SEP</th>
<th>OCT</th>
<th>YEARLY WELL DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>94-2</td>
<td>11.67</td>
<td>37.57</td>
<td>66.80</td>
<td>79.39</td>
<td>95.62</td>
<td>40.92</td>
<td>64.87</td>
<td>79.65</td>
<td>61.43</td>
<td>15.93</td>
<td>553.85</td>
</tr>
<tr>
<td>91-3</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>10.20</td>
<td>7.73</td>
<td>0.00</td>
<td>0.07</td>
<td>0.01</td>
<td>18.01</td>
</tr>
<tr>
<td>04-4</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.07</td>
<td>0.00</td>
<td>0.61</td>
<td>0.51</td>
<td>0.52</td>
<td>1.24</td>
<td>3.95</td>
</tr>
<tr>
<td>04-5</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.56</td>
<td>1.83</td>
<td>0.74</td>
<td>0.59</td>
<td>0.88</td>
<td>0.00</td>
<td>4.60</td>
</tr>
<tr>
<td>04-6</td>
<td>19.38</td>
<td>5.12</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>25.30</td>
<td>65.89</td>
<td>84.27</td>
<td>32.84</td>
<td>34.04</td>
<td>266.84</td>
</tr>
<tr>
<td>04-7</td>
<td>1.90</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.37</td>
<td>24.67</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>26.94</td>
</tr>
<tr>
<td>04-8</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>4.18</td>
<td>0.00</td>
<td>0.06</td>
<td>3.54</td>
<td>38.55</td>
<td>0.12</td>
<td>46.45</td>
</tr>
<tr>
<td>04-9</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>14.91</td>
<td>2.26</td>
<td>3.04</td>
<td>1.74</td>
<td>0.04</td>
<td>0.00</td>
<td>21.99</td>
</tr>
<tr>
<td>04-10</td>
<td>103.00</td>
<td>5.21</td>
<td>0.04</td>
<td>52.11</td>
<td>80.03</td>
<td>33.91</td>
<td>43.03</td>
<td>9.73</td>
<td>56.42</td>
<td>73.12</td>
<td>456.60</td>
</tr>
<tr>
<td>04-11</td>
<td>0.00</td>
<td>68.94</td>
<td>104.58</td>
<td>43.54</td>
<td>0.19</td>
<td>42.96</td>
<td>62.66</td>
<td>88.83</td>
<td>84.51</td>
<td>45.66</td>
<td>541.87</td>
</tr>
<tr>
<td>04-12</td>
<td>0.79</td>
<td>35.50</td>
<td>0.00</td>
<td>10.83</td>
<td>55.95</td>
<td>120.37</td>
<td>34.34</td>
<td>66.83</td>
<td>28.01</td>
<td></td>
<td>352.62</td>
</tr>
<tr>
<td>04-13</td>
<td>0.65</td>
<td>5.46</td>
<td>0.00</td>
<td>0.00</td>
<td>2.26</td>
<td>60.07</td>
<td>34.33</td>
<td>24.99</td>
<td>0.00</td>
<td></td>
<td>127.76</td>
</tr>
<tr>
<td>04-14</td>
<td>65.54</td>
<td>58.99</td>
<td>0.00</td>
<td>9.80</td>
<td>11.18</td>
<td>30.47</td>
<td>44.69</td>
<td>18.41</td>
<td>32.03</td>
<td>30.10</td>
<td>301.21</td>
</tr>
<tr>
<td>04-15</td>
<td>87.50</td>
<td>4.38</td>
<td>34.93</td>
<td>28.46</td>
<td>31.17</td>
<td>60.34</td>
<td>27.23</td>
<td>72.72</td>
<td>71.16</td>
<td>8.10</td>
<td>425.99</td>
</tr>
<tr>
<td>04-16</td>
<td>0.64</td>
<td>5.59</td>
<td>0.00</td>
<td>0.00</td>
<td>11.14</td>
<td>39.67</td>
<td>8.10</td>
<td>19.12</td>
<td>69.80</td>
<td>37.76</td>
<td>191.82</td>
</tr>
<tr>
<td>04-17</td>
<td>4.82</td>
<td>5.16</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.09</td>
<td>10.07</td>
</tr>
</tbody>
</table>

Monthly Totals, MG

- January: 295.89
- February: 231.92
- March: 206.35
- April: 213.30
- May: 261.25
- June: 370.74
- July: 509.09
- August: 447.78
- September: 540.07
- October: 274.18

Daily Averages, MGD

- January: 9.54
- February: 8.28
- March: 6.66
- April: 7.11
- May: 8.43
- June: 12.36
- July: 16.42
- August: 14.44
- September: 18.00
- October: 8.84
Shallow Groundwater Piezometer

- 18 Piezometers Installed
- 7 foot, sand-point wells
- Levels measured ~monthly during the growing season
- Data graphed over time
- Included in Annual Reports
Pond Water Levels

• Annual Monitoring (Baseline and Operational)
 – 47 ponds monitored
 – 4 times yearly (March, August, September, October)
 – Annual Report
Local Precipitation & Temperature Data

- Taken at Fremont, NE
- Monthly Averages compared to historical data
Stream Gauge Data

Taken at:
Platte River, Venice, NE
(USGS Gauge #06796500)

Elkhorn River, Ashland, NE
(USGS Gauge #06801000)

Figure 3 2011 Monthly Mean Stream Elevation of the Platte River near Venice, NE

Natural Color

- Multi-Temporal data
- Obtained annually 2005-2009
- Obtained every-other-year after 2009
Aerial Photography

– Color Infrared (CIR)
 • Multi-Temporal data
 • Obtained annually 2005-2009
 • Obtained every-other-year after 2009
Wetland Vegetation

- Sample plot monitoring along transects using wetland delineation methodology
- 7 monitored wetlands (primary wetlands)
 - 3 PEM, 3 PFO, 1 PSS
 - Data entered and stored in a Microsoft Access Database
 - Annual Report
Wetland Monitoring

• Standard Annual Wetland Monitoring:
 — Vegetation monitoring in all primary wetlands twice per year
 — Remote monitoring in secondary wetlands using aerial photography
 — CIR Aerial photography obtained every year
 — Piezometer readings at least 5 times per year

• Data Analysis
Monitoring Goals

• **What are we doing with all the data?**

 – Reminder: the permit states that monitoring is to occur two times per year until:

 • “the Corps determines that any impacts to wetlands as a result of Project operation are not likely to occur or that long-term wetland monitoring should be either decreased, increased, or stopped.”

• Criteria needed to measure indirect impacts

• Triggers or “Thresholds” were developed
Project Thresholds

Standard Monitoring

Data Analysis

Sampling Effort #2

Data Analysis

No Impact

Potential Impact

Sampling Effort #3 Increase Intensity

Data Analysis

Wetland Impact

Sampling Effort #2

Data Analysis

No Impact Occurring
Monitoring Intensity

• Begin at Standard Annual Wetland Monitoring
• If 3 consecutive monitoring efforts show no impact (RequestMethod), reduce level of effort
 – 3 levels of reduced monitoring established
• If 3 consecutive monitoring efforts show possible impact (RequestMethod), increase level of effort
• At reduced levels of monitoring, fewer “flags” are needed to move from one level to the next
Interrelationships

Vegetation Data

Prevalence Index

Species Diversity
Species Richness
C-Value
FQI

Species Diversity

Look at Other Factors

- Hydrology
- Aerial Photography

Project Impact
- Yes or No?

Statistical Significance
Contact Information:

Justin Bailey, PWS
Burns & McDonnell
9400 Ward Parkway
Kansas City, MO 64114

816.822.4311 • jbailey@burnsmcd.com