Colonization and succession in restored wet grasslands: lessons from long-term experiments

Norbert Hölzel

Institute of Landscape Ecology, University of Münster
Case study I:

Monitoring of restoration management in wet meadows in NW-Germany over 20 years
Long-term trends over 20 years (floristic composition)

Long-term trends over 20 years
(Functional types)

Long-term trends over 20 years
(Strategy types)

Long-term trends over 20 years (Ellenberg indicator values)

Change in harvested N (mowing twice a year)

Change in harvested P (mowing twice a year)

Changes in species-richness (mowing twice a year)

Summary I:

- successful depletion of nutrient pools by hay making twice
- mesotrophic condition can be achieved within 20 years
- significant impact of mowing regimes on floristic composition
- decline in ruderals and competitors
- spread of stress-tolerant species
- slight increase of plot species-richness
- almost no immigration of new target species
- ongoing changes even after 20 years
Case study II: Topsoil removal and hay transfer
Org. Subst.

- A = former arable field
- B = 30 cm topsoil removal
- C = 50 cm topsoil removal
- D = Molinion donar sites
- E = Cnidion donar sites

Cnidion donar site
Molinion donar site
Hay transfer after topsoil removal
Restoration site in 1997
Same site in 2004
Species number 1998-2008
(Strip I-III)
Transferred target species:

- *Arabis nemorensis*
- *Gentiana pneumonanthe*
- *Viola elatior*
- *Iris spuria*
Trajectories in DCA-ordination (all strips)

- Wet strips
- Dry strips

Axes:
- Axis 1
- Axis 2

Environmental filter

Time
Topsoil removal
- 30 cm
- 50 cm
- Sample plots (Seedbank and soil)

Origin of hay
- Cnidion
- Molinio
- Zero plots

Flooding frequency
- High
- Low
- Never flooded
Trajectories in DCA-ordination (wet strips only)

- Molinion
- Cnidion
- Control

Floristic composition of transferred hay

Axis 1

Axis 2

Time
Summary II:

• topsoil removal in combination with hay transfer is extremely successful to overcome seed dispersal and micro-site limitation

• sorting of introduced species by environmental filters

• long-term footprint of hay origin on species composition

• ongoing successional processes even after 12 years

• need for long-term monitoring
Thanks to:

Forstamt Groß-Gerau: Henner Gonnermann, Dietrich Kulsch, Paul Hedderich

University of Gießen: Annette Otte, Jupp Scholz-vom Hofe

Municipality Riedstadt: Barbara Stowasser, Matthias Harnisch

Student helpers: Lorenz Geissler, Tobias Donath, Petra Göbel, Ines Klingshirn, Valter Mayrink

University of Münster: Gaby Broll, Yvonne Oelmann, Andreas Vogel, Kathrin Poptcheva, Eva Rosinski, Kristin Fleischer (graphs) and many other students

www.uni-muenster.de/oekosystemforschung
Change in harvested biomass (mowing twice a year)

former arable field
30 cm top soil removal
50 cm top soil removal
Molinion donor site
Cnidion donor site
Development of legumes

Cumulative cover

- **Genista tinctoria**
- **Securigera varia**
