Habitats Invaded by European Frogbit (*Hydrocharis morsus-ranae*) in Lake Ontario Coastal Wetlands

Brad Mudrzynski, Douglas A. Wilcox, and Aaron Heminway

The College at Brockport, State University of New York
What Is *Hydrocharis morsus-ranae*?

- Member of Hydrocharitaceae
- Similar to and confused with American frogbit (*Limnobium spongia*)
 - Native to SE United States
- Range
 - Native to most of Europe and northern Asia
 - Introduced and invasive in United States and Canada
- Non-rooted, floating aquatic plant
- Shallow water, little to no wave energy
Introduction and Dispersal

• 1932- Central Experiment Farm arboretum in Ottawa, Ontario
 – From trench, to Dows Lake, to Rideau Canal and onward (Minshall 1940)
• Common in St. Lawrence River, Lake Ontario, Lake Champlain, and inland
• Less common in Lake Erie
• Map from Catling and Porebski 1995
Reproduction

• Turions (asexual winter buds) form on stolons
 – Abscess in fall
 – Float to surface in spring
• Up to 10 ramets grow from each new turion
 – Each ramet can produce 10 new turions
• Turions viable for 16-24 months (Burnham 1998)
• Sexual reproduction is possible
 – Much less prevalent (Burnham 1988)
Impacts

• Rapid population growth rate creates dense mats
• Tough yet flexible stolons interlock
 – Creates thick, floating mats
• 95% decline in native submersed vegetation species (Catling et al. 1988)
• Fewer snails, crustacea, and insect larve under mats (Catling et al. 1988)
• Inhibits recreational boating activity
Goals

• Quantify invasion characteristics
 – Spatially within wetlands
 – Among hydrogeomorphic classes
 – Correlations with hydrologic, chemical, and physical data

• Data from Great Lakes Indicators Consortium: Implementing Great Lakes Coastal Wetland Monitoring Project
 – EPA-GLRI 2010
 – Only using Lake Ontario Data
Data Collection

• 45 vegetation quads per wetland
 – Three vegetation zones (not always)
 • SAV, emergent, meadow marsh
 – Three transects per wetland, perpendicular to elevation gradient
 – Five quads per transect in each zone
• 15 quads per transect
• 3 transects
Plant Quad Data Used

• Species cover and occurrence
 – Frogbit

• Habitat data
 – Water depth
 – Organic depth
 – Detritus cover
 – Invasive cattail (Typha angustifolia, Typha X glauca)
 • Dominant emergent species
Water Quality Data Used

• Site level data
 – Mostly collected in SAV

• Parameters
 – TN, NO\textsubscript{2}/NO\textsubscript{3}-N, TP, OP, alkalinity, specific conductance, chloride, and color
Statistical Analyses

• Kruskal-Wallace for cover and occurrence
 – HGM
 – Zone

• Principal Components Analysis
 – Chemistry and physical habitat characteristics
 • Transformed for normality and standardized (z-score)

• Non-parametric correlations
 – Principal components vs frogbit cover and occurrence
Results: Average Cover

• Present in 29 of 34 sites (85%)
• All zones: 7.54%
 – Range: 0.0-35.4%
• Emergent zone: 16.0%
 – Range: 0.0-39.7%
• Greatest cover in emergent zone
 – $\chi^2 = 36.196$, df = 2, p=0.000
 – SAV \approx Meadow Marsh
Results: Quad Occurrence

- All zones: 29.8%
 - Range: 0.0-100%
- Emergent zone: 51.5%
 - Range: 0.0-100%
- Most prevalent in emergent zone
 - $\chi^2 = 30.099$, df = 2, p=0.000
 - SAV ≈ Meadow Marsh
Frogbit Cover and Occurrence Along Vegetation Transect

Percent Cover or Occurrence in Quads

Quad Location On Transect

SAV
Emergent
Meadow Marsh

Occurrence
Coverage

Quad 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Results: Cover and Occurrence by HGM

- No significant differences among HGM
 - Cover
 - All zones: $H(2) = 0.132, P = 0.936$
 - Emergent zone only: $H(2) = 0.609, P = 0.738$
 - Occurrence
 - All zones: $H(2) = 0.025, P = 0.988$
 - Emergent zone only: $H(2) = 0.609, P = 0.738$
Frogbit Cover by HGM and Zone

Average Frogbit Cover

- **Barrier Beach**: All zones vs. Emergent
 - Coverage in all zones
 - Coverage in emergent areas

- **Lacustrine**: All zones vs. Emergent
 - Coverage in all zones
 - Coverage in emergent areas

- **Riverine**: All zones vs. Emergent
 - Coverage in all zones
 - Coverage in emergent areas
Frogbit Occurrence by Zone and HGM

- Barrier Protected
- Lacustrine
- Riverine

Percent of quads with Frogbit present

- All zones
- Emergent
Results: PCA

- Three PCs retained 68.8% of variance

<table>
<thead>
<tr>
<th>PC1</th>
<th>PC2</th>
<th>PC3</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Runoff"</td>
<td>"Growth Inhibitors"</td>
<td>“Water and Phosphorus"</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specific Conductance (+)</th>
<th>Detritus Cover (+)</th>
<th>Water Depth (+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloride Ion (+)</td>
<td>Organic Depth (+)</td>
<td>Total P (+)</td>
</tr>
<tr>
<td>Alkalinity (+)</td>
<td>Color (+)</td>
<td>Ortho P (+)</td>
</tr>
<tr>
<td>Total N (+)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO₂/NO₃-N (+)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Results: Correlations

<table>
<thead>
<tr>
<th>PC</th>
<th>Emergent Cover</th>
<th>Emergent Occurrence</th>
<th>All Zones Cover</th>
<th>All Zones Occurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Runoff</td>
<td>r = -0.346, p = 0.048</td>
<td>r = -0.370, p = 0.034</td>
<td>r = -0.286, p = 0.107</td>
<td>r = -0.264, p = 0.137</td>
</tr>
<tr>
<td>Growth Inhibitors</td>
<td>r = -0.054, p = 0.766</td>
<td>r = -0.062, p = 0.732</td>
<td>r = 0.001, p = 0.997</td>
<td>r = 0.115, p = 0.525</td>
</tr>
<tr>
<td>Growth Enhancers</td>
<td>r = 0.111, p = 0.537</td>
<td>r = 0.101, p = 0.577</td>
<td>r = 0.162, p = 0.369</td>
<td>r = 0.108, p = 0.548</td>
</tr>
</tbody>
</table>

• “Runoff” was the only correlated PC
 • Emergent
 • Cover and Occurrence significant
 • All Zones
 • Not significant
 • All negative correlations
Discussion

• European frogbit prevalent throughout Lake Ontario

• Frogbit can achieve high densities
 – Site level maximum: 35.4%
 – Emergent zone maximum: 39.7%
 – Individual quads: 100%

• Ecosystem effects
What was most invaded?

- No differences among HGM
- Drastic differences among vegetation zones
 - Mostly in emergent
 - Protection from waves
 - Deep enough water
 - Meadow marsh
 - Only if sufficient standing water
 - SAV
 - Only if protected
Discussion: Runoff

• Frogbit decreased with increasing “runoff”
 – Europe: mesotrophic and low salt waters
 – What if we clean up the lakes?

• Mechanism still unknown
 – Direct chemical inhibition?
 – Indirect effects?
 – Need controlled experiments
The Other Great Lakes and Beyond

• Extrapolating results may be tricky
 - Lake Ontario is unique
 - Hydroperiod, nutrient combinations, species assemblage, etc.

• Most vulnerable areas:
 - Any HGM
 - Emergent zones
 - Low runoff
Literature Cited

