Hydrological drivers of organic matter quality, mineralization and export in a tropical dam-impacted floodplain system

Acknowledgements:

Stephan Suter, Bernhard Wehrli, David B. Senn
Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich
Eawag, Swiss Federal Institute of Aquatic Science and Technology

Moritz F. Lehmann
Institute of Environmental Geosciences, University of Basel, Switzerland

Jason Wamulume, Griffin Shanungu
University of Zambia, Zambia Wildlife Authority
The Zambezi River Basin

- 8 riparian countries
- Rainfall 950 mm evaporation >90%
- 4 existing dams
- 6 planned dams

Kafue River Basin:
- 152,000 km²
- 2 large dams built in 1970s
Introduction

The Kafue Flats

Itezhi Tezhi Dam

Kafue River

Kafue Gorge Dam

Lusaka

6,500 km²
Introduction

Upstream Itezhi-Tezhi dam (closed 1978)
Introduction

Kafue River in the Kafue Flats

G. Shanungu
Introduction

The Kafue Flats

- Seasonal flooding
- Dams changed flooding patterns
- Affected plant and wildlife ecology
- No biogeochemical evidence

(from Mumba & Thompson 2005)
Introduction

Importance of tropical floodplain ecosystems

- Floodplains = high-value ecosystems
 - habitat, water supply, flood mitigation, food production

- Important reactors for C and nutrient turnover

- Hydrological exchange: crucial process
 - Biogeochemistry
 - Ecological functioning

- Dam impact on exchange?

Flood pulse concept
Junk et al. 1989

Bayley, 1995 / epa.gov
Introduction

Research objectives

1. **Hydrological drivers**
 Quantify the hydrological exchange between Kafue River and floodplain. Related to dam operation?

2. **Mineralization**
 Effects of river-floodplain exchange on the dissolved oxygen regime

3. **Organic matter quality and export**
 Effects of lateral exchange and dam operation on fluxes and quality of organic C and N
Approach

Sampling strategy

![Map and diagram showing river levels and sampling strategy](image)

- **Kafue River**
- **Floodplain**

Stage (m a.s.l.)

- May 2008
- Oct 2008
- May 2009
- May 2010

Q (m3/s)

- May 2008
- Oct 2008
- May 2009
- May 2010

Dam release
River-floodplain exchange and dissolved oxygen

Dissolved oxygen (DO)

- **Hypotheses:**
 - Inflow of low-DO water
 - Injection of labile OM to river
 - Exchange with the floodplain

Plot:
- Steep DO decline over 40 km
- Low DO levels for 150 km
- Floodplain DO <15 µM
River-floodplain exchange and dissolved oxygen

Discharge (Q) and natural tracers

May 2010 - flooding season

1 steep Q decline
 - ~80 % loss to floodplain
 - no outflows detected

2 increase in tracers at constant Q (DO decline)

3 gain in Q after 300 km and tracer increase (evaporation)
River-floodplain exchange and dissolved oxygen

Channel morphology

1. Reduction in channel cross section
 Water forced into the floodplain

2. Flow and transect area constant

3. River channel expansion
 \rightarrow inflow of floodplain water
River-floodplain exchange and dissolved oxygen

Tracer mixing model: $\delta^{18}O$

1. No exchange
2. Intense exchange at constant flow
3. $>80\%$ of discharge from floodplain

Mass balance calculations:
Lateral exchange \rightarrow DO decline

- Seasonal variations?
- Role of upstream dam?
River-floodplain exchange over longer time scales

Comparison with data since the 1960s

FE = measure of river-floodplain exchange

Fractional exchange ratio FE:

\[
if \ Q_{out} - Q_{in} \geq 0 \quad FE = \frac{Q_{out} - Q_{in}}{Q_{out}}
\]

\[
if \ Q_{out} - Q_{in} < 0 \quad FE = \frac{Q_{out} - Q_{in}}{Q_{in}}
\]
River-floodplain exchange and dissolved oxygen

River-floodplain exchange over longer time scales

- Upstream: outflows from Oct-May
- Downstream: consistent inflows
- Similar seasonality
- Reduction in FE amplitude

Dams have reduced river-floodplain exchange by 50%
River-floodplain exchange and dissolved oxygen

Conclusions

- River-floodplain exchange: dominant hydrological driver
 - Flooding season: >80% of water passes through floodplain
 - Driven by channel morphology
 - Beyond current concepts
 - Impacts on DO regime of the river
 - 50% reduction by dam operation

Effects on source and fate of organic C and N in the Kafue River?

Hypothesis: Large change in organic matter quality
Organic C and N

Carbon and nitrogen speciation

- Along sections of high exchange:
 - DOC increase, POC decrease
- High contribution of DON
- Low (<2 µM) DIN concentrations

Loads, source and quality of OM?
Organic C and N

Export of OC and ON

OC and N loads: \(C \times Q \ [t \ d^{-1}] \)

- 4-fold increase in OC, mostly DOC
- 5-fold increase in N, mostly DON
- Deficit: 1,300 t N per year

Large OC and ON exports,
>70% mobilized from floodplain
Organic C and N

Sources of DOM and POM

- **13C (‰)**
 - C$_4$ plants
 - C$_3$ plants
 - soils, sediments
 - phytoplankton

- **15N (‰)**
 - DOM
 - POM

- **C:N ratio**
 - ITT sediments
 - N$_2$-fixation
 - Spectroscopy: terrestrial origin
 - humic/fulvic acids
 - Constant δ^{15}N-DON, high N$_2$-fixation?

- **DOM, POM**
 - Spectroscopy: terrestrial origin
 - humic/fulvic acids
 - Constant δ^{15}N-DON, high N$_2$-fixation?

- **Terrestrial DOM, phytoplankton POM**

k^a Kunz et al. 2011
Conclusions

- Mobilization and export of floodplain DOM
- Little variation in DOM composition
 - Stable, refractory (from upstream wetlands?)
 - No change during reservoir transit

DOM: mobilized from floodplain

- Terrestrial POM trapped by dam (Kunz et al. 2011)
- Discharge of phytoplankton POM

POM: PP from reservoir and floodplain
 → high dam impact