Futurecasting effects of sea level rise, climate change, and restoration on individual species

Brad Stith, Zuzanna Zajac, Catherine A. Langtimm, Eric D. Swain, Don DeAngelis, and Melinda Lohmann
Hydrodynamic/Climate Models

- Abundance of futurecast data from hydrology/climate models becoming available.
- Huge data volume creates opportunity and data analysis problem.
- Need to incorporate futurecast data into biological models.
- Long temporal scale and large spatial extent dictate use of simple biological models.
S. Florida Hydrodynamic Models

TEN THOUSAND ISLANDS

Bisect
Hydrology Model Output
- Salinity
- Temperature
- Stage/depth

Resolution
- 15 minute time step
- 500 meter grid cell

Scenarios
- CERP restorations
- Sea Level Rise

Sample output (Figures)
Ten-Thousand Islands salinity before and after Picayune Strand Restoration
Snapshot: 01 Oct. 2003
Biological Models

- Need a simple approach to compare biological implications of different scenarios of restoration, sea level rise, and climate change
- Habitat Suitability Index (HSI) and Spatially Explicit Species Index (SESI) models
 - do not require extensive biological datasets
 - incorporate spatial and temporal variation
 - allow relative comparisons of different scenarios
 - model potential habitat suitability, not predicting occurrence
Biological Research Focus

- **Submerged Aquatic Vegetation (SAV)**
 - *Vallisneria americana* (Tape grass) – freshwater species
 - *Halodule wrightii* (Shoal grass) – salt-tolerant species
- **Florida Manatee**
Halodule wrightii Vallisneria americana

HSI Model

Salinity

Temperature

Light/depth

USGS
Habitat Suitability Indices (HSIs)

\[HSI_{Total} = \sqrt[3]{HSI_{Salinity} \times HSI_{Temperature} \times HSI_{ADBL}} \]

- Calculated for each grid cell and every time step
- \(HSI_{Total} \) for a cell depends only on environmental variables in each cell (i.e. is independent from neighboring cell values).
1. Identify uncertain spatially distributed inputs and define uncertainty models (PDFs).
2. Generate input values pseudo randomly from assigned PDFs using Sobol method.
3. Run the model for multiple alternative input sample (Monte Carlo).
4. Construct PDF for the model output (from N output values).
5. Perform SA using SIMLAB.
Specification of uncertainty for look-up tables, using $\text{HSI}_{\text{salinity}}$ vs. salinity lookup table as an example variable

Uniform ± 20% around base value, truncated to 1 for the upper limit
Mean HSI (left) and Uncertainty/SD (right) for *Vallisneria americana*.
Benchmark Cells for Sensitivity Analysis

1. Area 1 (Turner River)
2. Area 2 (Sunday Bay Upper)
3. Area 5 (Alligator Bay)
4. Area 6 (Lostmans Second Bay)
5. Area 10 (Broad River Bay)
6. Area 11 (Upper Broad River)
7. Area 12 (Harney River)
8. Area 13 (Tarpon Bay)
9. Area 14 (Upper Shark River)
10. Area 16 (Lower Shark River)
Shark River

Dry Season Salinity Trends

- **Mean Salinity (5-year mean)**

Wet Season Salinity Trends

- **Salinity Variance**
Habitat suitability PDFs reflect uncertainty, but show high and low suitabilities for the 2 SAV species that differ among sites.
Sensitivity Indices – 4 ENP sites

Halodule wrightii

Halodule model shows more sensitivity to light,

Vallisneria americana

Vallisneria model shows more sensitivity to salinity
Picayune Strand Restoration (lower left map) shows reduced bay salinities, but differences absent with sea level rise (July 1998-2008 mean).
Picayune Strand Restoration shows reduced salinities compared to sea level rise and existing condition scenarios. Variance peaks during beginning and end of wet season.
Habitat suitability for *Halodule* is lower for sea level rise scenarios at this site. Variance is high, especially at dry-wet season transition.
Summary

HSI/SESI approach provides a simple modeling framework to analyze and compare biological implications of large futurecast datasets and alternative restoration scenarios.

Uncertainty and Sensitivity Analysis shows which model parameters produce the greatest variation and provide estimates of model uncertainty in space and time. This can help direct monitoring resources to measure parameters and sites with greatest uncertainty and sensitivity. Uncertainty maps can help managers evaluate model results.

Difference maps and graphs of changes in habitat suitability can reveal trends and relative differences associated with restoration and sea level rise.
Acknowledgements

- USGS FISCHS (Future Impacts of Sea Level Rise on Coastal Habitats and Species)
- Funding from
 - USGS Greater Everglades Priority Ecosystems Science
 - USGS Ecosystems Mapping
 - USGS Global Change Research & Development Program