Predicting and detecting consequences of SLR and storm surges on coastal vegetation regime shifts

Jiang Jiang2,*, Don DeAngelis1, Tom Smith1 \\
Su-Yean Teh3, Hock-Lye Koh3

1U.S. Geological Survey, 2University of Miami, 3Universiti Sains Malaysia

* Position starts August: NIMBioS Postdoctoral Fellow
• Mangroves bound freshwater vegetation types like hardwood hammocks or freshwater marsh, forming sharp ecotones.

• “Ecotone” – a zone of relatively rapid change between two communities.

Martin Ken et al 1997
• What maintains the sharp ecotone?
 – The ‘switch’ hypothesis
 – The ‘environmental gradient’ hypothesis

• Can this ecotone undergo rapid shifts?
Switch: Forest/Mire Ecotone (Agnew and Wilson, 1993)

Positive feedback loop maintaining forest/mire boundary

Height of wood
Stable boundaries
Mire
The ‘Switch’ Hypothesis for mangrove/hammock ecotone

Positive feedbacks between vegetation and salinity maintain a sharp boundary.

- **Hammock**: Low salinity stable state
- **Mangrove**: High salinity stable state
The ‘Environmental Gradient’ Hypothesis

Sharp environmental change might also create a sharp ecotone of hardwood hammocks-mangrove community.

We have tested these hypotheses with a model, SEHM.
Model overview--SEHM
(Spatially Explicit Hammocks and Mangroves)

Red = mangrove
Blue = hammock

This is an individual based simulation model
Elevation gradient can create sharp ecotone near mean tidal height.

But positive feedback can create sharp boundaries even with homogeneous topography.

The model showed that both mechanisms contribute to the sharp boundary.
• What maintains the sharp ecotone?
 – The ‘switch’ hypothesis
 – The ‘environmental gradient’ hypothesis

• Can this ecotone undergo rapid shifts?
 – Storm surges may overcome the stabilizing positive feedbacks
 – This could possibly create a ‘regime shift’, moving the mangrove/freshwater vegetation ecotone inland in a ‘jump’.
Lostmans River Ranger Station (LRS) in Florida in January 1998 (*above*), and in October 2005 (*below*), just after Hurricane Wilma.

This also produced an overwash of salinity inland from the coast

Smith et al. 2009
• Sea level rise and storm surges may be beyond our control.
• But understanding the potential for regime shifts of vegetation types due to storm surges may help us lessen their effects.
 • “Regime shift – a relatively sharp temporal change from one regime to a contrasting one, where a regime is a dynamic ‘state’ of a system” Scheffer 2009
Harney River Transition

For example: Is the shift in this boundary the result of storm surges, or simply a gradual change due to SLR?
Tracks of hurricanes 1851-2006

What is the potential for a storm surge from a hurricane to cause regime shifts in vegetation?
Resilience and Regime shift

System

Alternative stable domains

Only one stable domain in this case

Gunderson, 2000
Hypothesized mechanism of vegetation transition (regime shift)

Increased salinity from storm surge accompanied by mangroves seedling transport

Further salinity Increase
Simplify the system to a mathematical model...

- Two competing vegetation types
- One inhibitor

```
Salt Intolerant Species (N1)  Salt Tolerant Species (N2)
```

![Diagram showing interactions between salt intolerant and tolerant species, influenced by salinity (S).]
• The model produces two basins of attraction with alternative stable states, divided by a separatrix.

• Resilience is tendency to remain in same basin.

• Regime shift is tendency to move to another basin following perturbation.
Possibility of alternative stable states occurs only over a certain range of values groundwater salinity

Groundwater salinity (g) increases

\[
\frac{dS}{dt} = \beta_0(g) + \frac{\beta_1 N_2}{k + N_2} (g - \varepsilon S)
\]
Numerical evaluation of resilience to salinity overwash of different durations

- Short salinity perturbation, salt-intolerant species is resilient and returns to steady state.
- Long salinity perturbation, salt-intolerant species undergoes regime shift to salt tolerant species.

Perturbation occurs here.
Hurricane Wilma: Oct 2005, Category 3
Made landfall 50 km north of the Harney River (HR) transition

• Will Hurricane Wilma trigger long-term vegetation change?
Hurricane Wilma occurred on October 25, 2005.
Empirical data reveal little effect on groundwater level and salinity – probably not enough to trigger a regime shift.
Conclusions

• Environmental gradient can itself cause a separation of vegetation communities by an ecotone
• “Switch” (Positive feedback) increases the sharpness of the ecotone boundary
• Short inhibitor pulse perturbation didn’t result in regime shift in our model.
• But a long ‘press’ perturbation resulted in regime shift.
• These results are a start in addressing the question of whether storm surges from hurricanes can cause regime shifts in coastal vegetation
Acknowledgments

- USGS FISCHS (Future Impacts of Sea Level Rise on Coastal Habitats and Species)
- Department of Biology, University of Miami
- Funding from
 - USGS Greater Everglades Priority Ecosystems Science
 - USGS Global Change Research & Development Program