Cryptic Cattail Invasions in North American Wetlands: Impacts to Biodiversity

Steven E. Travis, Department of Biology, University of New England, Biddeford, ME
Joy E. Marburger, National Park Service, Great Lakes Research and Education Center, Porter, IN
Once members of mixed species assemblages, many cattail stands now form dense monocultures.
Cattail monocultures as novel ecosystems

- High primary productivity
- High litter accumulation, soil organic matter content, and soluble nutrients (Tuchman et al. 2009)
- Reduced soil surface light and temperature (Larkin et al. 2012)
- Elevated sediment microbial community diversity (Angeloni et al. 2006)
- Reduced insect herbivore abundance (Penko and Pratt 1987)
- Elevated bird abundance (Smith-Cartwright et al. 2011)
Why have cattails become invasive?

- Altered hydrology (e.g., Wilcox et al. 1985)
- Eutrophication (e.g., Woo and Zedler 2002)
- Hybridization (Travis et al. 2010)

Typha latifolia
Broad-leaf cattail

Typha domingensis
Southern cattail

Typha angustifolia
Narrow-leaf cattail

Typha x glauca
Hybrid cattail
Hybrid cattail: *Typha x glauca*
Cattail monocultures dominated by hybrids show the importance of vigorous clonal growth to invasiveness.
Hybridization is attributable to the westward expansion of the narrow-leaf cattail from Galatowitsch et al. 1999.
but does every cattail invasion involve hybrids, and how can we know for certain?

Table 3. Distribution frequency of SSR alleles in clones that were identified as either *Typha latifolia* (L) or *Typha angustifolia* (A) using RAPD markers. Shading indicates fragment sizes that were designated as *T. latifolia* (pink, underlined), *T. angustifolia* (blue), or uncertain (no shading); boldface with green shading indicates exceptions for these designations. Collection sites are shown in Tables 1 and 2.

<table>
<thead>
<tr>
<th>TA 3 locus Allele</th>
<th>TA 5 locus Allele</th>
<th>TA 7 locus Allele</th>
<th>TA 8 locus Allele</th>
<th>TA 16 locus Allele</th>
<th>TA 20 locus Allele</th>
<th>TA 21 locus Allele</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size (bp)</td>
<td>L</td>
<td>A</td>
<td>Size (bp)</td>
<td>L</td>
<td>A</td>
<td>Size (bp)</td>
</tr>
<tr>
<td>174 40 0</td>
<td>276 4 0</td>
<td>176 5 0</td>
<td>267 18 0</td>
<td>167 15 0</td>
<td>21 84 0</td>
<td>278 26 0</td>
</tr>
<tr>
<td>176 57 0</td>
<td>278 26 0</td>
<td>182 4 2</td>
<td>269 25 0</td>
<td>177 2 0</td>
<td>93 52 2</td>
<td>280 0 14</td>
</tr>
<tr>
<td>178 9 0</td>
<td>280 80 0</td>
<td>186 3 6</td>
<td>271 85 0</td>
<td>179 80 1</td>
<td>99 0 15</td>
<td></td>
</tr>
<tr>
<td>180 18 1</td>
<td>282 2 0</td>
<td>188 10 0</td>
<td>273 0 2</td>
<td>181 1 5</td>
<td>101 0 65</td>
<td></td>
</tr>
<tr>
<td>210 6 56</td>
<td>286 0 14</td>
<td>190 108 0</td>
<td>275 2 44</td>
<td>191 0 1</td>
<td>103 0 2</td>
<td></td>
</tr>
<tr>
<td>216 0 9</td>
<td>288 0 31</td>
<td>192 6 0</td>
<td>287 0 9</td>
<td>193 0 70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>290 0 8</td>
<td>196 0 68</td>
<td>289 0 19</td>
<td>195 0 9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>292 0 1</td>
<td>210 0 8</td>
<td>291 0 12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>294 0 26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total no. of clones: 65 33 56 40 68 42 65 42 49 43 68 42 13 7

Group 1: 52 26 43 33 55 35 52 35 36 36 55 35 0 0

Group 2: 13 7 13 7 13 7 13 7 13 7 13 7

from Snow et al. 2011
Is hybridization between narrow-leaf and broad-leaf cattail occurring on the Atlantic Coast?

- Old Saybrook, CT
- Fire Island NS, NY (3 sites)
- Prime Hook NWR, DE (2 sites)
- Assateague Island NS, MD
- Back Bay NWR, VA (2 sites)
Yes, but pure stands of narrow-leaf cattail are not uncommon.
Is hybridization between narrow-leaf and broad-leaf cattail occurring in the Great Lakes region?
where cattails are a particular nuisance

VOYA: Large Lake Margin
SACN: Small Lake Margin
PIRO: Sweet Gale Swamp
SLBE: Beaver Impoundment
CUVA: Floodplain Fen
INDU: Bog
Yes, but the migrating hybrid front has thus far bypassed the central Great Lakes... or has it?
... and native broad-leaf cattail persists where motorized traffic is limited or restricted.
Is hybridization between narrow-leaf and broad-leaf cattail occurring in California?
Is hybridization between narrow-leaf and southern cattail occurring in Florida?

- T. domingensis
- T. angustifolia
- T. x glauca or other hybrid
Patterns of Cattail Hybridization

- Hybridization between North American cattails is widespread
- Hybrids are fertile, creating the potential for gene introgression
- Hybrids are especially dominant (and aggressive) in the western Great Lakes region
- Portions of the central Great Lakes region have yet to be colonized by hybrids
- Hybridization and introgression are also apparent on the West Coast
- . . . And, tentatively, on the Gulf Coast
Due to the fertility of hybrids, the invasion dynamics of hybrid cattails are complex.
Future Directions

- Develop additional species-diagnostic microsatellite markers for enhanced detection of introgression
- Confirm the reliability of pollen as a low-cost indicator of cattail hybridization

T. latifolia
T. angustifolia
T. x glauca
Modeling the spread of non-native cattail by “resistant kernel analysis”

- Sample cattail pollen from the coast of New England, fanning out to encompass the entire western Great Lakes
- Include lightly populated areas and isolated wetlands in addition to urban areas and disturbance wetlands
- Correlate multiple anthropogenic and environmental features with presence/absence of non-native cattail

Figure courtesy of S. Cushman