Environmental Variance and Dispersal Explain Benthic Diatom Spatial and Temporal Beta Diversity in the Florida Everglades

Nick O. Schulte and Evelyn E. Gaiser

Department of Biology, Florida International University

Florida Coastal Everglades LTER
Acknowledgements

- Evelyn Gaiser
- John Kominoski
- Sylvia Lee
- Eric Sokol
- Joel Trexler
Introduction
Introduction: Everglades restoration

- Restore oligotrophic freshwater flow
- Mitigate effects of saltwater intrusion
- Oligohaline ecotone environmental & species diversity
Introduction: FCE LTER

- Ecotone primary producer composition regulated by phosphorus, salinity, hydrology
Introduction: Periphyton

• Periphyton roles

• Composition
Introduction: Diatoms

- Unicellular, siliceous microalgae

- Sensitive to environmental & spatial heterogeneity

Freshwater

Oligohaline
Introduction: Diatoms

- Indicators of water quality changes
Introduction: Beta diversity (β)

- Metacommunity framework
- Species turnover
 - Difference in species composition between:
 - 2+ local communities
 - Local and regional communities
- Spatial and temporal
Introduction: Microbial community structure

- Ecosystem structure & function

- Controls on microbial assembly unresolved
 - Particularly in Everglades ecotone
 - Sensitive to changes from SLR
Objectives
Objectives: Q$_{1}$ and H$_{1}$

- Q$_{1}$: How do spatial and temporal diatom β compare among freshwater and oligohaline?

- H$_{1}$: Oligohaline higher than freshwater
Objectives: Q_2 and H_2

- Q_2: What is natural environmental variance in freshwater and oligohaline?

- H_2: Oligohaline higher than freshwater
Objectives: Q_3 and H_3

- Q_3: What environmental variables explain freshwater and oligohaline β across sites and years?

- H_3: Both \rightarrow Phosphorus & conductivity
 Freshwater \rightarrow Hydroperiod & periphyton quantity
 Oligohaline \rightarrow Periphyton quality
Methods
Methods: Site selection

- CERP MAP sites
 - 2006 – 2013
 - 8 freshwater
 - 8 oligohaline

Saha et al. 2011
Methods: Site selection

- CERP MAP sites
 - 2006 – 2013
 - 8 freshwater
 - 8 oligohaline

CERP MAP oligohaline (O) and freshwater (Δ) sites
Methods: Data collection

- Hydrology
 - Hydroperiod
 - Conductivity
- Periphyton quantity
 - Biovolume
 - Ash-free dry mass
- Periphyton quality
 - % Phosphorus
 - % Organic content
- Diatom composition
Methods: Data analysis

• Tests of homogeneity of dispersion
 – Variability of \(\beta \)

• “BEST” analyses
 – Variables explaining \(\beta \)

• Variation partitioning
 – Categorize explanatory factors of \(\beta \)
Results
H₁ Results: Species dispersion

- Higher spatial β in oligohaline
- Low temporal β difference between regions
H₂ Results: Environmental dispersion

- Higher spatiotemporal variability in freshwater

![Graph showing environmental spatial and temporal dispersion for freshwater and oligohaline years/sites.](image-url)
H₃ Results: Explanations of β

<table>
<thead>
<tr>
<th>Region</th>
<th>ρ</th>
<th>Explanatory Variables (no order)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>0.599</td>
<td>COND, BIOV, TP, OC, WD</td>
</tr>
<tr>
<td>Freshwater</td>
<td>0.373</td>
<td>BIOV, COV, AFDM, WD, HYDRO</td>
</tr>
<tr>
<td>Oligohaline</td>
<td>0.379</td>
<td>OC, DM, WD, HYDRO</td>
</tr>
</tbody>
</table>

- **Both** → Conductivity & phosphorus
- **Freshwater** → Hydroperiod & periphyton abundance
- **Oligohaline** → Periphyton quality & hydroperiod
Discussion

- Both regions \rightarrow environmental controls?
 - Low dispersal between regions?

- Freshwater β \rightarrow dispersal limitation?
 - Low environmental correlation despite high variability

- Oligohaline β \rightarrow species interactions?
 - Low environmental correlation and variability
Ongoing and future work
Discussion: Ongoing and future work

- Contributions of dispersal-based factors
- Species interactions
- Diatom & periphyton community structure change
- Using diatoms to monitor ecotone change
Conclusions
Conclusions

- More species turnover across oligohaline region
- Low temporal change within sites in both regions
- More environmental variance in freshwater
- Regional β explained by environmental differences
- Local β likely influenced by dispersal & species interactions
Questions?

Even the fish are frightened, as the weird ray strikes the one-celled diatom, making it... grow... grow!

Stephanocyclyclus meneghiniana??