Development of Empirical Hydrologic and Water Quality Models of the Loxahatchee NWF Using Data-Mining Techniques

Paul Conrads
USGS- SC Water Science Center
Ed Roehl, Jr
Advanced Data Mining International, LLP

Greater Everglade Ecosystem Restoration Conference
July 13, 2010
Outline

- Data mining & Data driven models
- Modeling Loxahatchee NWR:
 - Water levels
 - Specific conductance
 - Total phosphorus
- LOXANN Decision Support System (DSS)
- DSS applications
 - Evaluation of flow releases
What is Data Mining?

- **Data Mining**: the search for valuable knowledge in massive volumes of data
- An amalgamation of techniques from various disciplines
- **Data Mining Tool Box**
 - signal processing, statistics, machine learning, chaos theory, advanced visualization
 - Artificial neural networks (ANN) models – one approach to machine learning

![Data ➔ Information ➔ Knowledge](USGS)
Data Driven Models

- Living in an era of “Big Data”
- Modeling – exercise in mapping inputs and outputs
- Empirical models - based on observations rather than on mathematically describable system processes
- Examples:
 - Linear regression: \(Y = mX + b \)
 - Artificial Neural Networks:
Loxahatchee Empirical Model

- Given inputs of flow, precipitation, and ET
- Create model(s) to simulate:
 - Water levels
 - Specific conductance
 - Total phosphorus

Inputs

Outputs
Model Architecture

SIANN = spatially interpolating artificial neural network model
Gage Height Models

Linear models based on optimal time delays and moving window averages of flow, rainfall, and ET

Spatially Interpolating ANNs – error correction models

Final prediction is the sum of the linear model and error prediction models.
Tau Tool

Excel application to evaluate moving window averages (MWA) and time delays of flow inputs.

Station selection

MWA and time delay settings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Active</th>
<th>MinWin on/off</th>
<th>MWA on/off</th>
<th>Win</th>
<th>Tau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rain</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>RAIN2</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>RAIN3</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>RAIN4</td>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>ET</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>ET1</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>ET2</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>SYNC</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Q1</td>
<td>1-NCH</td>
<td>OFF</td>
<td>OFF</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Q1c</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Q2</td>
<td>2-NCH</td>
<td>OFF</td>
<td>OFF</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Q2c</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Q3</td>
<td>3-NCH</td>
<td>OFF</td>
<td>OFF</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Q3c</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Q4</td>
<td>4-NCH</td>
<td>OFF</td>
<td>OFF</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Q4c</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Q5</td>
<td>5-NCH</td>
<td>OFF</td>
<td>OFF</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Q5c</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Q6</td>
<td>6-NCH</td>
<td>OFF</td>
<td>OFF</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Q6c</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>LOWWE</td>
<td>OFF</td>
<td>OFF</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Statistics – R and R²

- Low correlation between untransformed flow input and gage height: \(R^2 < 0.01 \)

Legend

- Blue – measured
- Red – sum Qs
- Green - error
Linear Models

Adjust MWA and time delays to increase the correlation between inputs and gage heights.

Correlation (R^2) increased from <0.01 to >0.75
Gage Height Error Correction Model

Model error with a spatially interpolating ANN model

Time series of linear model errors

Stacked Dataset

USGS
Gage Height Error Correction Model

Simulated model error

Time series of linear model errors

R² = 0.72
Gage Height Predictions

Final gage height prediction is a summation of the linear and error models.

Final gage height Predictions: R^2 0.90 – 0.98
Simulation of Specific Conductance and Total Phosphorus

Two stage models:
- Static model using X, Y and measured data
- Dynamic model predict variability about mean

USGS
Decision Support System

- Excel application
- Integrates
 - Historical database
 - ANN and regression models
- Model controls
- Streaming graphics
- 3D visualization
- Model simulation output

Lox Empirical Model

[Image of Lox Empirical Model]

USGS

[Image of USGS logo]
Excel Spreadsheet

- Sheets:
 - Flow set points
 - Model simulation controls
 - Graphs
 - User define flow input
 - Tabular output
 - Release notes
 - Database
DSS Application: Canal water intrusion into the marsh

Intrusion events: Canal WL > Marsh WL
Negative slope

Blue = measured
Red = predicted
R²=0.87
Scenario 1

- What will be the model response to the simulated change in slope if the flow of Q4 (S-10D, S-10C, S-10A, and S-39) is increased by 40 percent?

Increase flow by 40%
DSS Application Set-up

- On Flow Set Point sheet\(^1\) (Q SPs) set flows for the Q4 structures to \(140\%\) of historical flows

Flow input options:
- \% historical flow
- Constant flow

All flows are set to \% of historical \(100\% = \text{actual flows}\)
DSS Simulation Controls

- Go to “Controls” sheet
- Set simulation period
- Write output
- Run Simulation
DSS Scenario Results

40% increase flow Q4

- **Blue** – Simulated actual slope
- **Red** – Simulated scenario – increase flow Q4 by 140%

Increasing the flows did increase the slope.
Negative slopes overall were minimized
Positive slopes also increased.
Scenario 2
Inflow = Outflow

Set Outflow = Inflows
DSS Scenario Results

Outflow = Inflow

- Blue – simulated actual slope
- Red – simulated scenario slope Outflow = Inflow

- Increasing the outflows did increase the slope.
- Negative slopes overall were minimized
- Positive slopes also increased.
Summary

- Model allows users to evaluate effects of flow releases
- Evaluate short- and long-term flow regimes
- Excel platform for DSS – facilitates dissemination of models user of various technical levels
- DSS database easily updated
- USGS report in final stage of review/production process.
Questions

Paul Conrads
pconrads@usgs.gov
803 750-6140

That's the whole problem with science. You've got a bunch of empiricists trying to describe things of unimaginable wonder.