Chemical Treatment of Phosphorus in Lake Okeechobee Sediments as a Management Option to Reduce Bioavailability

July, 2010
Steve Friant, Booz Allen Hamilton
Eric Schinsing, Golder Associates
Andy Rodusky, South Florida Water Management District
Our Legacy

The Sediments Become the Source
Study Objectives

- Determine if chemical treatment is a feasible option for reducing phosphorus in the Lake Okeechobee water column
- Determine if chemical treatment will also control the release of phosphorus from the sediments
 - Typical lake conditions
 - Sediment resuspension - hurricanes
- Determine the most effective chemical(s) for treatment
- Determine fish toxicity of key chemicals
Sediment contaminant data at 19,398 sampling stations nationwide

- 8,348 or 43% are *probably* associated with harmful effects on aquatic life or human health
- 5,846 stations or 30% are *possibly* associated with harmful effects on aquatic life or human health
- 5,204 or 27% have *no indication* of associated harmful effect
Five Major Types of Pollutants are Found in Sediments:

- **Nutrients**, including phosphorous and nitrogen compounds such as ammonia.
- **Bulk Organics**, a class of hydrocarbons that includes oil and grease.
- **Halogenated Hydrocarbons or Persistent Organics**, a group of chemicals that are very resistant to decay. DDT and PCBs are in this category.
- **Polycyclic Aromatic Hydrocarbons (PAHs)**, a group of organic chemicals that includes several petroleum products and byproducts.
- **Metals**, such as iron, manganese, lead, cadmium, zinc, and mercury, and **metalloids** such as arsenic and selenium.
Possible Sediment Management Options

- Dredge
- Chemically treat
- Do Nothing – natural attenuation
- ASR Releases
- Combination of the Above
The Lake O. and S. Florida Problem

- Frequent blue-green algal blooms
- Loss of macroinvertebrate diversity in lake sediments
- Impact of phosphorus on downstream ecosystems
- South Florida has over 1,800 miles of canals that have diverted fresh water from the Everglades
Nutrient Cycling in Aquatic Systems

- Algal Biomass
- Lysed Cells
- POC/DOC Pool
- N&P Release
- Bacteria
- Water & Sed
- CO₂
- N&P Runoff
- POC/DOC Runoff
- O₂
The mud sediments are characterized as black organic-rich mud and high water content (84.2%).

Analytical testing of sediment cores obtained from the mud zone indicated that TP in the mud sediments ranges from approximately 200 to 2,000 milligrams per kilogram (mg/kg),
M9 Background

- It has been estimated that there are 80,000 hectares of lake bottom covered by organic mud.
- Internal cycling of P is driven by diffusion and wind-driven resuspension of the sediments.
- The internal loading is estimated to be similar to the current level of external loading.
- Could delay the reduction of the current water column P concentration.
It is an important state and local resource which provides water supply
- For nearby towns
- Agricultural operations
- Downstream ecosystems

A multi-million dollar recreational fishery

Provides flood control for surrounding communities

Home to migratory water fowl, wading birds and the federally endangered Everglade Snail Kite
Variables Studied

- 4 Chemicals
- 4 Dose concentrations
- Time
- Stationary
- Resuspended sediments
- Total Phosphorus (TP)
- Soluble Reactive Phosphorus (SRP)
- Turbidity
- Conductivity
- pH
Sediment Core Collection

- Gravity corer – 9.5 cm diameter
- 20 cm of sediment
- 50 cm of overlying water
- 27°C ambient water temperature
Sample Treatment

- Three cores were collected for each treatment including 3 control samples
 - 51 cores stationary treatment
 - 51 cores for resuspension treatment
- 200 gallons of lake water
- Only laboratory treatment was aeration and kept in the dark
- Cores were not biologically poisoned
Test Chemicals and Dose Concentrations

- Alum (10, 20, 30 and 40 mg/L)
- FeCl₃ (5, 10, 50 and 100 mg/L)
- CaCO₃ (10, 50, 100 and 200 mg/L)
- Ca(OH)₂ (10, 50, 100 and 200 mg/L)
Resuspension Simulator
Laboratory Setup
- Water samples taken 10 cm above the sediments
- SRP Samples were filtered and analyzed
- TP Samples analyzed as collected
Means, SD and CV for Day 0

<table>
<thead>
<tr>
<th></th>
<th>Turbidity (NTU)</th>
<th>Conductivity (microsiemens/cm)</th>
<th>SRP (mg/L as P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>14.703</td>
<td>0.463</td>
<td>0.099</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>5.360</td>
<td>0.009</td>
<td>0.018</td>
</tr>
<tr>
<td>Coefficient of Variation</td>
<td>0.365</td>
<td>0.019</td>
<td>0.182</td>
</tr>
</tbody>
</table>
Average SRPS for Stationary Calcium Carbonate Samples

CaCO3 Stationary SRP

Sample Day

SRP mg/L

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

0 5 10 15 20 25 30 35

10 mg/L
50 mg/L
100 mg/L
200 mg/L
Average SRPS for Resuspended Calcium Carbonate Samples

CaCO3 SRP Resuspended

Sample Day

SRP mg/L

0 5 10 15 20 25 30 35

0 0.02 0.04 0.06 0.08 0.1 0.12

10 mg/L
50 mg/L
100 mg/L
200 mg/L
Average SRPS for Stationary Calcium Hydroxide Samples
Average SRPS for Resuspended Calcium Hydroxide Samples

CaOH SRP Resuspended

Sample Day

SRP mg/L

10 mg/L
50 mg/L
100 mg/L
200 mg/L
Average SRPS for Stationary Alum Samples

Stationary Alum SRP

SRP mg/L

Sample Day

0 5 10 15 20 25 30 35

SRP ng/L

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

10 mg/L

20 mg/L

30 mg/L

40 mg/L
Average SRPS for Resuspended Alum Samples

![Graph showing Alum SRP Resuspended over Sample Days for different concentrations (10 mg/L, 20 mg/L, 30 mg/L, 40 mg/L).]
Average SRPS for Stationary Ferric Chloride Samples

FeCl SRP Stationary

 SRP mg/L

Sample Day
Average SRPS for Resuspended Ferric Chloride Samples
In Summary

- Calcium carbonate did not show any real control over SRP
- Calcium hydroxide did initially reduce SRP at the higher doses but data showed a release over time
- Alum was effective in reducing SRP and increased water column clarity but showed a release over time
- Ferric chloride above 5 mg/l was effective in reducing SRP over the 32 day study
- Toxicity studies with bluegill larvae for alum and ferric chloride did not have an effect at the highest dose