Carbon Cycling in a Big Cypress National Preserve Marsh

Barclay Shoemaker, Jordan Barr, Christian Lopez, and Vic Engel

Photo taken by Patrick Lynch (SFWMD)
Measurement of ET in Big Cypress National Preserve, South Florida
Acknowledgements

South Florida Water Management District
 Steve Krupa
 Mike Duever
 Cynthia Gefvert

U.S. Geological Survey
 Christian Lopez
 Troy Bernier
 Dave Sumner

Big Cypress National Preserve
 Damon Doumlele

National Park Service
 Jordan Barr
 Vic Engel
Hensen Marsh
• Measures ET and CO₂
• Net radiation
• Solar radiation
• Rainfall
• Surface/groundwater stage
• Ground-water temperature
• Surface-water temperature
• Air temperature
• Relative humidity
• Soil temperature
• Soil heat flux

Photo taken by Patrick Lynch (SFWMD)
EDDY CORRELATION METHOD
Most direct measurement of turbulent flux

• Flux depends on vertical speed and concentration of all eddies.
• Measure vertical wind-speed (w) and vapor density (ρ_v) rapidly (10 times per second) at a point → Statistically significant sample.
• Vapor flux (E) = covariance of w with ρ_v:

$$E = \overline{w'\rho_v'}$$

where overbars are 30-min means, primes' are rapid deviations from means.

• Sensible heat flux (H) = covariance of w with temperature (T):

$$H = \rho C_P \cdot \overline{w'T'}$$

where ρC_P is volumetric specific heat capacity of air.

Modified from Standard (2000)
Carbon Dioxide (CO2) Measurements

Using LICOR-7500 gas analyzer
Turbulent flux of water vapor

Modified from Standard (2000)
Carbon Dioxide (CO2) Measurements

These data are preliminary and have not received peer-review and USGS approval for publication
Biomass: total dry-mass of the plants \([\text{M}] \text{ (g)}\)

Primary Production: total plant-biomass per unit area \([\text{ML}^{-2}] \text{ (g m}^{-2}\)\)

Productivity: rate of production \([\text{ML}^{-2}\text{T}^{-1}] \text{ (g m}^{-2} \text{ year}^{-1}\)\)

Gross Ecosystem Productivity (GEP): gross plant productivity. Excludes respiration by the plants.

Ecosystem Respiration (ER): plant and soil respiration

Net Ecosystem Productivity (NEP): net amount of carbon uptake by the ecosystem, including plants, soil and woody debris
Ecosystem Convention

\[\text{+ flux is into ecosystem} \]
\[\text{- flux is out of ecosystem} \]

\[\text{GEP} = \text{NEP} + \text{ER} \]

Photo taken by Patrick Lynch (SFWMD)
Carbon Exchange

\[\text{GEP} = \text{NEP} + \text{ER} \]
Annual Totals

\[
\text{NEP} = \text{GEP} - \text{ER}
\]

<table>
<thead>
<tr>
<th>Year</th>
<th>GEP (g C m(^{-2}))</th>
<th>ER (g C m(^{-2}))</th>
<th>NEP (g C m(^{-2}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>905</td>
<td>783</td>
<td>125</td>
</tr>
<tr>
<td>2009*</td>
<td>610</td>
<td>645</td>
<td>-34</td>
</tr>
</tbody>
</table>

*missing November and December 2009
Net Ecosystem Production (NEP)
Future Work

Dwarf Cypress (55’ tower)

- Measures ET
- Net radiation
- Solar radiation
- Rainfall
- Wind speed and direction
- Surface/groundwater stage
- Ground-water temperature
- Surface-water temperature
- Air temperature
- Relative humidity
- Sap flow (Bovard, FGCU)

Photo taken by Patrick Lynch (SFWMD)
Cypress Swamp (120’ tower)
- Measures ET
- Net radiation
- Solar radiation
- Rainfall
- Wind speed and direction
- Surface/groundwater stage
- Ground-water temperature
- Surface-water temperature
- Air temperature
- Relative humidity
- Soil temperature
- Soil heat flux
- Soil moisture
- Sap flow (Bovard, FGCU)

Future Work

Photo taken by Patrick Lynch (SFWMD)
Future Work

Pine upland (120’ tower)
- Measures ET
- Net radiation
- Solar radiation
- Rainfall
- Surface/groundwater stage
- Ground-water temperature
- Surface-water temperature
- Air temperature
- Relative humidity
- Soil moisture
- Soil temperature
- Soil heat flux
- Sap Flow (Bovard)

Photo taken by Patrick Lynch (SFWMD)
Conclusions

1. Site can be a carbon source or sink.
 \[\text{NEP(Jan08 to Dec08)} = 125 \text{ g C m}^{-2} \]
 \[\text{NEP(Jan09 to Nov09)} = -34 \text{ g C m}^{-2} \]

2. Air temp and hydro-period partly explain NEP variability.

Any questions? Email Barclay at bshoemak@usgs.gov

Photo taken by Patrick Lynch (SFWMD)
WISH US LUCK AND THANKS!

Pyranometer
Air Temperature Relative Humidity Probe
Net Radiometers