Unifying Concepts, Principles & Practices in Environmental Restoration Planning & Adaptive Decisionmaking

by

Larry E. Fink, M.S.
Waterwise Consulting™, LLC

waterwiseconsulting.com
Disclaimer

This presentation was prepared by author Larry E. Fink as a private consultant. All information expressed herein, including but not limited to analysis, methods, findings, conclusions, recommendations and opinions are solely those of the author and do not state or reflect those of the author’s employer. The author’s employer does not make any warranty, expressed or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, product or process disclosed.
Need

- The present legally over-constrained, scientifically under-constrained approach to restoration planning and problem-solving cannot guarantee the development and implementation of the optimum restoration plan.
- Instead, it has resulted in unacceptable false positive (Type I) & negative (Type II) errors in problem conceptualization, hypothesis formulation, study design, and data analysis, integration & synthesis.
Need

• That has, in turn, caused or contributed to:
 • A misallocation of staff, physical & fiscal restoration resources for monitoring, research, and modeling
 • An unacceptable risk of irreversible adverse consequences for which there is no acceptable adaptive response
Purpose

• To foster a paradigm shift ...
• ... that results in the adaptive evolution of the optimum approach for increasing knowledge & understanding ...
• .. that facilitates well-informed, robust allocation of limited monitoring, research & modeling resources...
• ... to facilitate wise restoration decision-making that avoids unacceptable Type I & II errors.
Approach

• Balances
 • Holism vs. Reductionism
 • Over- vs. Under-simplification
 • Theoretical, Basic & Applied Research
 • Research, Monitoring & Modeling
 • Physical, Statistical & Mechanistic Modeling
 • Pedagogy, Publication & Pragmatism
Approach

- Checks
 - Peer review of design, implementation & interpretation
 - Consistency with unifying concepts, principles & practices in mathematics, science & engineering
 - Self-consistency
 - Diagnostics, QA/QC & Feedback
Unifying Concepts, Principles & Practices

• Mathematics
 • Symmetry
 • Chaos Theory
 • Fractal Theory
 • Optimization Theory

• Complex Systems
 • Analog vs. Digital Representation
 • Conceptual, Statistical, & Mechanistic Models
 • Systems Analysis/Operations Research
 • Interpolation, Extrapolation, & Scaling

• Physicochemistry
 • Mass & Energy Balance
 • Principle of Indeterminacy
 • Principle of Least Action
 • Principle of Ergodicity
 • Nonlinear Thermodynamics & Kinetics
Unifying Concepts, Principles & Practices

- **Mathematics**
 - Symmetry
 - Chaos Theory
 - Fractal Theory \(\rightarrow\) derivation of allometric \(M^{3/4}\) metabolic scaling law (West et al., 2002)
 - Optimization Theory

- **Complex Systems**
 - Analog vs. Digital Representation
 - Conceptual, Statistical, & Mechanistic Models
 - Systems Analysis/Operations Research
 - Interpolation, Extrapolation, & Scaling

- **Physicochemistry**
 - Mass & Energy Balance
 - Principle of Indeterminacy
 - Principle of Least Action
 - Principle of Ergodicity
 - Nonlinear Thermodynamics & Kinetics
Unifying Concepts, Principles & Practices

- **Biology**
 - Phylogeny Recapitulates Ontogeny
 - Nature vs. Nurture
 - Systematics

- **Ecology**
 - Information Theory
 - Bioenergetics
 - Stoichiometrics
 - Stochastic Dynamics

- **Ergonomics**

- **Diagnostics**
 - Uncertainty/Sensitivity Analysis
 - Quality Assurance/Quality Control
References