Ecological restoration in Saudi Arabia

The Thumama Park Restoration Trial

Proven (knowledge driven), Cost Effective, Scalable restoration solutions

Patrick Courtney, Kingsley Dixon, Jason Stevens, Ellery Mayence

Kings Park and Botanic Garden, West Perth, WA, 6005
School of Plant Biology
The University of Western Australia, Crawley, WA, 6009
Why our approach

“To achieve the restoration of biodiversity and ecosystem services, restoration actions need to be tightly coupled with ‘state-of-the-art’ scientific progress”

Target Plant Concept

- Quantifiable seedling attributes that are linked to outplanting success

Courtesy Anthony Davis
Drylands of the world

41% of the earth’s surface; sustain 38% of the global population*; Drylands store
45% of the global terrestrial carbon; support 50% of world’s livestock; one third of
global biodiversity hotspots.

Losing soil at up to 10cm per annum

Estimate of desertification: up to 20%
Drylands reach degradation tipping points
What makes arid land restoration challenging
But exciting!

- Rapid degradation.
- Limited understanding.
- Pulse-driven (rain)— timing of restoration.

We achieve barely 5% restoration success rates*.

These are pulse driven systems – 20 minute rainfall event
The summer winter rainfall divide driving contrasting plant phenologies in Australian deserts

Knowledge based decisions

Water in the environment at three scales

Landscape Local Plant-scale.
Thumama Park Restoration Trial

The Target Plant Concept
Quantifiable seedling/direct seeding attributes that are linked to outplanting success

Understanding water in the plant and the environment – seedling age, water delivery, timing, stress
Thumama Park Restoration Trial: restoring framework communities

Three *Acacia* framework trees; framework shrubs
103,000 plants, 128 treatment combinations + precision seeding
Focusing water in the establishment niche

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Nil</td>
<td>No Water (controls)</td>
</tr>
<tr>
<td>2</td>
<td>SA drip</td>
<td>Seasonal Average for Riyadh per month</td>
</tr>
<tr>
<td>3</td>
<td>Low drip</td>
<td>1L/plant – Monthly</td>
</tr>
<tr>
<td>4</td>
<td>High drip</td>
<td>3L/plant - 2 times per week</td>
</tr>
<tr>
<td>5</td>
<td>SA deep pipe</td>
<td>Seasonal average for Riyadh</td>
</tr>
<tr>
<td>6</td>
<td>Low deep pipe</td>
<td>1L/plant – Monthly</td>
</tr>
<tr>
<td>7</td>
<td>High deep pipe</td>
<td>3L/plant - 2 times per week</td>
</tr>
</tbody>
</table>

Deep pipe (20cm) infiltration

Very deep (2m) pipe infiltration
Plant protection and optimising transplanting success

Salicylic acid (Aspirin)

Trinexapac-ethyl (Moddus)
Smarter seed use: a key to unlocking restoration potential

Improving seed use efficiency – currently <10%

First use of:
Direct seeding of wild species
All species (blue) and *Acacia gerrardii* (blue).
All species (blue) and *Acacia gerrardii* (blue).

![Graph showing survival rates for different treatments](image)

- **Nil**
- **Drip (surface)**
- **Low (1l/month)**
- **High (24l/month)**
- **Seasonal Av (SA)**
- **Deep (20cm pipe)**
Control Salicylic Acid

Acacia gerrardii

Nil Water
Seasonal Av Deep Pip
1l/month Deep Pipe

High water not shown
>90% survival across all treatments
Knowledge based decisions

Predicting restoration success – using Restoration Ecophysiology
Ecophysiology informing plant capability – Greenstock plantings

Give plants access to more water and they will use it

Benefit of deep pipe

A (Photosynthetic rate) = \(\mu \text{mol.m}^{-2}.\text{s}^{-1} \)

Take home messages: Greater water application allows for more growth potential (photosynthesis), a reduced amount of water stress but also allows plants to have a less efficient water use strategy. Deep pipe irrigation reduces water stress.
Ecophysiology informing plant capability – Anti-stress compounds

A (Photosynthetic rate) = \(\mu \text{mol.m}^{-2}.s^{-1} \)
Key Take Home Messages

Precision in water delivery is more important than quantity

Nutrient amendments were detrimental (low rainfall systems)

Salicylic acid is a cost-effective plant growth and survival improver

Aspirin, low water, deep pipe (1l per month for year) – 40% survival

NEXT STEPS:
- Business case – cost:benefit analysis
- Refine natural catchments that deliver water to depth.
- Slow release SA
- Expand trial to range of soils, environments in the Middle East
Precision Seeding

- Soil texture
- Moisture retention
- Impedance
- Infiltration rate
- Seed burial depth

Outcome: sand dominated soils matter – low impedance, water infiltration to depth, emergence free from soil crusting
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Low</th>
<th>Medium</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand content</td>
<td>Poor</td>
<td>Moderate</td>
<td>Good</td>
</tr>
<tr>
<td>Infiltration</td>
<td>Poor</td>
<td>Moderate</td>
<td>Good</td>
</tr>
<tr>
<td>Surface crusting</td>
<td>Good</td>
<td>Moderate</td>
<td>Poor</td>
</tr>
<tr>
<td>Surface penetration resistance</td>
<td>Moderate</td>
<td>Good</td>
<td>Poor</td>
</tr>
<tr>
<td>At-depth penetration resistance</td>
<td>Good</td>
<td>Moderate</td>
<td>Poor</td>
</tr>
<tr>
<td>Water shedding</td>
<td>Good</td>
<td>Moderate</td>
<td>Poor</td>
</tr>
<tr>
<td>Mobile surface conditions</td>
<td>Good</td>
<td>Moderate</td>
<td>Poor</td>
</tr>
<tr>
<td>Rock content</td>
<td>Moderate</td>
<td>Good</td>
<td>Poor</td>
</tr>
</tbody>
</table>
Ecophysiology informing micro-site capability – direct seeding

Take-home message: direct seeded plants have 14% of the PS capacity of natural recruits

\[A \text{ (Photosynthetic rate)} = \mu\text{mol.m}^{-2}.\text{s}^{-1} \]
Deep ripping improves emergence in direct seeding

Microsites possible using boxed microcosms
Broader benefits for the Middle East

• More effective water use in restoration (50 liters per plant per week vs 2 liters per month).
• Use of native species for water wise landscapes
• Up-scaling of cost-effective restoration
Globalising dryland restoration

The Dryland Restoration Initiative (DRI)

Linking SER with science leaders, leading global institutions, the UN, national governments

- Build the science and practice toolkit.
- Enhance ecological restoration capacity and networking with dryland champions.
- Liaise, collaborate and seek funding with individuals, communities, governments and industry partners.
- Be a restoration innovation hub.